A model based on the evolution of electron density derived from the Fokker-Planck equation has been built to describe ablation of dielectrics during femtosecond laser pulses. The model is verified against an experimental investigation of borosilicate glass with a 200fs laser pulse centered at 780nm wavelength in a range of laser energies. The ablation mechanisms in dielectrics include multi-photon ionization (MPI) and avalanche ionization. MPI dominates the ionization process during the first stages of the laser pulse, contributing seed electrons which supply avalanche ionization. The avalanche process initiates and becomes responsible for the majority of free-electron generation. The overall material removal is shown to be highly dependent upon the optical response of the dielectric as plasma is formed. The ablation model is employed to predict the response of borosilicate glass to an enhanced electromagnetic field due to the presence of microspheres on the substrate surface. It is shown that the diffraction limit can be broken, creating nanoscale surface modification. An experimental study accompanies the model, with AFM and SEM characterizations that are consistent with the predicted surface modifications.

1.
Zhang
,
J.
,
Sugioka
,
K.
, and
Midorikawa
,
K.
, 1999, “
High-Quality and High-Efficiency Machining of Glass Materials by Laser-Induced Plasma-Assisted Ablation Using Conventional Nanosecond UV, Visible, and Infrared Lasers
,”
Appl. Phys. A
0947-8396,
69
, pp.
879
882
.
2.
Park
,
D. S.
,
Cho
,
M. W.
,
Lee
,
H.
, and
Cho
,
W. S.
, 2004, “
Micro-Grooving of Glass Using Micro-Abrasive Jet Machining
,”
J. Mater. Process. Technol.
0924-0136,
146
, pp.
234
240
.
3.
Yan
,
B. H.
,
Wang
,
A. C.
,
Huang
,
C. Y.
, and
Hunag
,
F. Y.
, 2002, “
Study of Precision Micro-Holes in Borosilicate Glass Using Micro EDM Combined with Micro Ultrasonic Vibration Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
1105
1112
.
4.
Zhang
,
J.
,
Sugioka
,
K.
, and
Midorikawa
,
K.
, 1998, “
High-Speed Machining of Glass Materials by Laser Induced Plasma Assisted Ablation Using a 532nm Laser
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
67
, pp.
499
501
.
5.
Nikumb
,
S.
,
Chen
,
Q.
,
Li
,
C.
,
Reshef
,
H.
,
Aheng
,
H. F.
,
Qiu
,
H.
, and
Low
,
D.
, 2005, “
Precision Glass Machining, Drilling and Profile Cutting by Short Pulse Lasers
,”
Thin Solid Films
0040-6090,
477
(
1–2
), pp.
216
221
.
6.
Youn
,
S. W.
, and
Kang
,
C. G.
, 2005, “
Maskless Patterning of Borosilicate Glass Nanoindentation-Induced Etch-Hillock Surface Using Phenomena
,”
J. Non-Cryst. Solids
0022-3093,
351
(
37–39
), pp.
3065
3074
.
7.
Hirano
,
M.
,
Kawamura
,
K. I.
, and
Hosono
,
H.
, 2002, “
Encoding of Holographic Grating and Periodic Nano Structure by Femtosecond Laser Pulse
,”
Appl. Surf. Sci.
0169-4332,
197
, pp.
688
698
.
8.
Lenzner
,
M.
,
Kruger
,
J.
,
Sartania
,
S.
,
Cheng
,
Z.
,
Spielmann
,
Ch.
,
Mourou
,
G.
,
Kautek
,
W.
, and
Krausz
,
F.
, 1998, “
Femtosecond Optical Breakdown in Dielectrics
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
4076
4079
.
9.
Stuart
,
B. C.
,
Feit
,
M. D.
,
Herman
,
S.
,
Rubenchik
,
A. M.
,
Shore
,
B. W.
, and
Perry
,
M. D.
, 1995, “
Laser-Induced Damage in Dielectrics With Nanosecond to Subpicosecond Pulses
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
2248
2251
.
10.
Perry
,
M. D.
,
Stuart
,
B. C.
,
Banks
,
P. S.
,
Feit
,
M. D.
,
Yanovsky
,
V.
, and
Rubenchik
,
A. M.
, 1999, “
Ultrashort-Pulse Laser Machining of Dielectric Materials
,”
J. Appl. Phys.
0021-8979,
85
, pp.
6803
6810
.
11.
Campbell
,
S.
,
Dear
,
F. C.
,
Hand
,
D. P.
, and
Reid
,
D. T.
, 2005, “
Single-Pulse Femtosecond Laser Machining of Glass
,”
J. Opt. A, Pure Appl. Opt.
1464-4258,
7
, pp.
162
168
.
12.
Ben-Yakar
,
A.
,
Byer
,
R. L.
,
Harkin
,
A.
,
Ashmore
,
J.
,
Stone
,
H.
,
Shen
,
M.
, and
Mazur
,
E.
, 2003, “
Morphology of Femtosecond-Laser-Ablated Borosilicate Glass Surfaces
,”
Appl. Phys. Lett.
0003-6951,
83
(
15
), pp.
3030
3032
.
13.
Ben-Yakar
,
A.
, and
Byer
,
R. L.
, 2004, “
Femtosecond Laser Ablation Properties of Borosilicate Glass
,”
J. Appl. Phys.
0021-8979,
96
, pp.
5316
5323
.
14.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
835
841
.
15.
Chimmalgi
,
A.
,
Grigoropoulos
,
C. P.
, and
Komvopolous
,
K.
, 2005, “
Surface Nanostructuring by Nano-∕Femtosecond Laser-Assisted Scanning Force Microscopy
,”
J. Appl. Phys.
0021-8979,
97
, p.
104319
.
16.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2004, “
Prediction of Crater Shape in Femtosecond Laser Ablation of Dielectrics
,”
J. Phys. D
0022-3727,
37
, pp.
1492
1496
.
17.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2005, “
Energy Transport and Material Removal in Wide Bandgap Materials by a Femtosecond Laser Pulse
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
487
499
.
18.
Kruer
,
W. L.
, 1987,
The Physics of Laser Plasma Interaction
,
Addison Wesley
,
New York
.
19.
Kittel
,
C.
, 1996,
Introduction to Solid State Physics
,
Wiley
,
New York
.
20.
Sjodin
,
T.
,
Petek
,
H.
, and
Dai
,
H.-L.
, 1998, “
Ultrafast Carrier Dynamics in Silicon: A Two-Color Transient Reflection Grating Study on a (111) Surface
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
5664
5667
.
21.
Lu
,
Y.
,
Theppakuttai
,
S.
, and
Chen
,
S. C.
, 2003, “
Marangoni Effect in Nanosphere-Enhanced Laser Nanopatterning of Silicon
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
4143
4145
.
22.
Heltzel
,
A.
,
Theppakuttai
,
S.
,
Chen
,
S. C.
, and
Howell
,
J. R.
, 2005, “
Analytical and Experimental Investigation of Laser Nanoscale Surface Modification
,”
ASME J. Heat Transfer
0022-1481,
127
(
11
), pp.
1231
1235
.
23.
Yee
,
K. S.
, 1966, “
Numerical Solution of Inital Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media
,”
IEEE Trans. Antennas Propag.
0018-926X,
14
, pp.
302
307
.
24.
Umashankar
,
K. R.
, and
Taflove
,
A.
, 1982, “
A Novel Method to Analyse Electromagnetic Scattering of Complex Objects
,”
IEEE Trans. Electromagn. Compat.
0018-9375,
24
, pp.
397
405
.
25.
Roden
,
J. A.
, and
Gedney
,
S. D.
, 2000, “
Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media
,”
Microwave Opt. Technol. Lett.
0895-2477,
27
, pp.
334
339
.
26.
Taflove
,
A.
, and
Hagness
,
S.
, 2005,
Computational Electrodynamics, The Finite-Difference Time-Domain Method
, 3rd ed.,
Artech House
,
Boston
.
27.
Sullivan
,
D.
, 2000,
Electromagnetic Simulation Using the FDTD Method
,
Wiley
,
New York
.
28.
Zhou
,
Y.
,
Hong
,
M. H.
,
Fuh
,
JYH
,
Lu
,
L.
,
Luk’yanchuk
,
B. S.
,
Wang
,
Z. B.
,
Shi
,
L. P.
, and
Chong
,
T. C.
, 2006, “
Direct Femtosecond Laser Nanopatterning of Glass Substrate by Particle-Assisted Near-Field Enhancement
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
023110
.
29.
Zheng
,
Y. W.
,
Luk’yanchuk
,
B. S.
,
Lu
,
Y. F.
,
Song
,
W. D.
, and
Mai
,
Z. H.
, 2001, “
Dry Laser Cleaning of Particles from Solid Substrates: Experiments and Theory
,”
J. Appl. Phys.
0021-8979,
90
, pp.
2135
2142
.
30.
Wang
,
Z. B.
,
Hong
,
M. H.
,
Luk’yanchuk
,
B. S.
,
Huang
,
S. M.
,
Wang
,
Q. F.
,
Shi
,
L. P.
, and
Chong
,
T. C.
, 2004, “
Parallel Nanostructuring of GeSbTe Film With Particle Mask
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
79
, pp.
1603
1606
.
31.
Ikawa
,
T.
,
Mitsuoka
,
T.
,
Hasegawa
,
M.
,
Tsuchimori
,
M.
,
Watanabe
,
O.
, and
Kawana
,
Y.
, 2001, “
Azobenzene Polymer Surface Deformation Due to the Gradient Force of the Optical Near Field of Monodispersed Polystyrene Spheres
,”
Phys. Rev. B
0163-1829,
64
, p.
195408
.
32.
Wang
,
Z. B.
,
Hong
,
M. H.
,
Luk’yanchuk
,
B. S.
,
Lin
,
Y.
,
Wang
,
Q. F.
, and
Chong
,
T. C.
, 2004, “
Angle Effect in Laser Nanopatterning With Particle-Mask
,”
J. Appl. Phys.
0021-8979,
96
(
11
), pp.
6845
6850
.
You do not currently have access to this content.