Concentrating light into a nanometer domain is needed for optically based materials processing at the nanoscale. Conventional nanometer-sized apertures suffer from low light transmission, therefore poor near-field radiation. It has been suggested that ridge apertures in various shapes can provide enhanced transmission while maintaining the subwavelength optical resolution. In this work, the near-field radiation from an H-shaped ridge nanoaperture fabricated in an aluminum thin film is experimentally characterized using near-field scanning optical microscopy. With the incident light polarized along the direction across the gap in the H aperture, the H aperture is capable of providing an optical spot of about 106nm by 80nm in full-width half-maximum size, which is comparable to its gap size and substantially smaller than those obtained from the square and rectangular apertures of the same opening area. Finite different time domain simulations are used to explain the experimental results. Variations between the spot sizes obtained from a 3×3 array of H apertures are about 4–6%. The consistency and reliability of the near-field radiation from the H apertures show their potential as an efficient near-field light source for materials processing at the nanoscale.

1.
Mansfield
,
S. M.
,
Studenmund
,
W. R.
,
Kino
,
G. S.
, and
Osato
,
K.
, 1993, “
High Numerical-Aperture Lens System for Optical Data Storage
,”
Opt. Lett.
0146-9592,
18
(
4
), pp.
305
307
.
2.
Betzig
,
E.
,
Trautman
,
J. K.
,
Wolfe
,
R.
,
Gyorgy
,
E. M.
,
Finn
,
P. L.
,
Kryder
,
M. H.
, and
Chang
,
C. H.
, 1992, “
Near-Field Magneto-Optics and High Density Data Storage
,”
Appl. Phys. Lett.
0003-6951,
61
, pp.
142
144
.
3.
Peng
,
C.
,
Mihalcea
,
C.
,
Buchel
,
D.
,
Challener
,
W. A.
, and
Gage
,
E. C.
, 2005, “
Near-Field Optical Recoding Using a Planar Solid Immersion Mirror
,”
Appl. Phys. Lett.
0003-6951,
87
, pp.
151105
-1–151105-
3
.
4.
Partovi
,
A.
,
Peale
,
D.
,
Wuttig
,
M.
,
Murray
,
C. A.
,
Zydzik
,
G.
,
Hopkins
,
L.
,
Baldwin
,
K.
,
Hobson
,
W. S.
,
Wynn
,
J.
,
Lopata
,
J.
,
Dhar
,
L.
,
Chichester
,
R.
, and
Yeh
,
J. H.-J.
, 1999, “
High-Power Laser Light Source for Near-Field Optics and its Application to High-Density Optical Data Storage
,”
Appl. Phys. Lett.
0003-6951,
75
, pp.
1515
1517
.
5.
Bethe
,
H.
, 1944, “
Theory of Diffraction by Small Holes
,”
Phys. Rev.
0031-899X,
66
, pp.
163
182
.
6.
Thio
,
T.
,
Pellerin
,
K. M.
,
Linke
,
R. A.
,
Lezec
,
H. J.
, and
Ebbesen
,
T. W.
, 2001, “
Enhanced Light Transmission Through a Single Subwavelength Aperture
,”
Opt. Lett.
0146-9592,
26
(
24
), pp.
1972
1974
.
7.
Raether
,
H.
, 1988,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
,
Springer
, Berlin, Germany.
8.
Shi
,
X.
, and
Hesselink
,
L.
, 2002, “
Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
41
(
3B
), pp.
1632
1635
.
9.
Tanaka
,
K.
, and
Tanaka
,
M.
, 2003, “
Simulation of an Aperture in the Thick Metallic Screen that Gives High Intensity and Small Spot Size Using Surface Plasmon Polariton
,”
J. Microsc.
0022-2720,
210
, pp.
294
300
.
10.
Jin
,
E. X.
, and
Xu
,
X.
, 2004, “
FDTD Studies on Optical Transmission Through Planar Nano-Apertures in a Metal Film
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
43
(
1
), pp.
407
417
.
11.
Jin
,
E. X.
, and
Xu
,
X.
, 2005, “
Radiation Transfer Through Nanoscale Apertures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
, pp.
163
173
.
12.
Sendur
,
K.
, and
Challener
,
W.
, 2003, “
Near-Field Radiation of Bow-Tie Antennas and Apertures at Optical Frequencies
,”
J. Microsc.
0022-2720,
210
, pp.
279
283
.
13.
Jin
,
E. X.
, and
Xu
,
X.
, 2005, “
Obtaining Super Resolution Light Spot Using Surface Plasmon Assisted Sharp Ridge Nanoaperture
,”
Appl. Phys. Lett.
0003-6951,
86
, pp.
111106
-1–111106-
3
.
14.
Matteo
,
J. A.
,
Fromm
,
D. P.
,
Yuen
,
Y.
,
Schuck
,
P. J.
,
Moerner
,
W. E.
, and
Hesselink
,
L.
, 2004, “
Spectral Analysis of Strongly Enhanced Visible Light Transmission Through Single C-Shaped Nanoapertures
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
648
650
.
15.
Chen
,
F.
,
Itagi
,
A.
,
Bain
,
J. A.
,
Stancil
,
D. D.
,
Schlesinger
,
T. E.
,
Stebounova
,
L.
,
Walker
,
G. C.
, and
Akhremitchev
,
B. B.
, 2003, “
Imaging of Optical Field Confinement in Ridge Waveguides Fabricated on Very-Small-Aperture Laser
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
3245
3247
.
16.
Courjon
,
D.
, 2003,
Near-Field Microscopy and Near-Field Optics
,
Imperial College Press
, London, UK.
17.
Kunz
,
K.
, and
Luebbers
,
R.
, 1996,
The Finite Difference Time Domain Method for Electromagnetics
,
CRC
, Boca Raton, FL.
18.
Taflove
,
A.
, 1995,
Computational Electrodynamics: The Finite-Difference Time-Domain Method
,
Artech House
, Boston, MA.
19.
Lide
,
D. R.
, 1996,
CRC Handbook of Chemistry and Physics
,
CRC
, Boca Raton, FL.
20.
Gordon
,
R.
, and
Brolo
,
A. G.
, 2005, “
Increased Cut-off Wavelength for a Subwavelength Hole in a Real Metal
,”
Opt. Express
1094-4087,
13
(
6
), pp.
1933
1938
.
You do not currently have access to this content.