A model for predicting heat transfer during condensation of refrigerant R134a in horizontal microchannels is presented. The thermal amplification technique is used to measure condensation heat transfer coefficients accurately over small increments of refrigerant quality across the vapor-liquid dome (0<x<1). A combination of a high flow rate closed loop primary coolant and a low flow rate open loop secondary coolant ensures the accurate measurement of the small heat duties in these microchannels and the deduction of condensation heat transfer coefficients from measured UA values. Measurements were conducted for three circular microchannels (0.506<Dh<1.524mm) over the mass flux range 150<G<750kgm2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to interpret the results based on the applicable flow regimes. The heat transfer model is based on the approach originally developed by Traviss, D. P., Rohsenow, W. M., and Baron, A. B., 1973, “Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design,” ASHRAE Trans., 79(1), pp. 157–165 and Moser, K. W., Webb, R. L., and Na, B., 1998, “A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes,” ASME, J. Heat Transfer, 120(2), pp. 410–417. The multiple-flow-regime model of Garimella, S., Agarwal, A., and Killion, J. D., 2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3), pp. 1–8 for predicting condensation pressure drops in microchannels is used to predict the pertinent interfacial shear stresses required in this heat transfer model. The resulting heat transfer model predicts 86% of the data within ±20%.

1.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2001, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
1089-3954,
5
(
4
), pp.
293
311
.
2.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
, 2003, “
Transport in Microchannels—A Critical Review
,”
Annu. Rev. Heat Transfer
1049-0787,
13
, pp.
1
50
.
3.
Garimella
,
S. V.
, and
Singhal
,
V.
, 2004, “
Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks
,”
Heat Transfer Eng.
0145-7632,
25
(
1
), pp.
15
25
.
4.
Liu
,
D.
, and
Garimella
,
S. V.
, 2004, “
Investigation of Liquid Flow in Microchannels
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
1
), pp.
65
72
.
5.
Coleman
,
J. W.
, and
Garimella
,
S.
, 1999, “
Characterization of Two-Phase Flow Patterns in Small Diameter Round and Rectangular Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
15
), pp.
2869
2881
.
6.
Coleman
,
J. W.
, and
Garimella
,
S.
, 2000, “
Two-Phase Flow Regime Transitions in Microchannel Tubes: The Effect of Hydraulic Diameter
,” Am. Soc. Mech. Eng., Heat Transfer Div., HTD-366, pp.
71
83
.
7.
Coleman
,
J. W.
, and
Garimella
,
S.
, 2003, “
Two-Phase Flow Regimes in Round, Square and Rectangular Tubes During Condensation of Refrigerant R134a
,”
Int. J. Refrig.
0140-7007,
26
(
1
), pp.
117
128
.
8.
Garimella
,
S.
,
Killion
,
J. D.
, and
Coleman
,
J. W.
, 2002, “
An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular Microchannels
,”
J. Fluids Eng.
0098-2202,
124
(
1
), pp.
205
214
.
9.
Garimella
,
S.
,
Killion
,
J. D.
, and
Coleman
,
J. W.
, 2003, “
An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Noncircular Microchannels
,”
J. Fluids Eng.
0098-2202,
125
(
5
), pp.
887
894
.
10.
Garimella
,
S.
,
Agarwal
,
A.
, and
Coleman
,
J. W.
, 2003, “
Two-Phase Pressure Drops in the Annular Flow Regime in Circular Microchannels
,”
21st IIR International Congress of Refrigeration
, August 12–22, Washington, DC, Paper No. ICR0360, International Institute of Refrigeration.
11.
Garimella
,
S.
,
Agarwal
,
A.
, and
Killion
,
J. D.
, 2005, “
Condensation Pressure Drop in Circular Microchannels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
1
8
.
12.
Breber
,
G.
,
Palen
,
J. W.
, and
Taborek
,
J.
, 1980, “
Prediction of Horizontal Tubeside Condensation of Pure Components Using Flow Regime Criteria
,”
J. Heat Transfer
0022-1481,
102
(
3
), pp.
471
476
.
13.
Traviss
,
D. P.
,
Rohsenow
,
W. M.
, and
Baron
,
A. B.
, 1973, “
Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation for Condenser Design
,”
ASHRAE Trans.
0001-2505,
79
(
1
), pp.
157
165
.
14.
Dobson
,
M. K.
,
Chato
,
J. C.
,
Hinde
,
D. K.
, and
Wang
,
S. P.
, 1994, “
Experimental Evaluation of Internal Condensation of Refrigerants R-12 and R-134a
,”
ASHRAE Trans.
0001-2505,
100
, pp.
744
754
.
15.
Soliman
,
H. M.
, 1986, “
Mist-Annular Transition During Condensation And its Influence on the Heat Transfer Mechanism
,”
Int. J. Multiphase Flow
0301-9322,
12
(
2
), pp.
277
288
.
16.
Soliman
,
H. M.
, 1982, “
On the Annular-to-Wavy Flow Pattern Transition During Condensation Inside Horizontal Tubes
,”
Can. J. Chem. Eng.
0008-4034,
60
(
4
), pp.
475
481
.
17.
Yang
,
C.-Y.
, and
Webb
,
R. L.
, 1996, “
Condensation of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
4
), pp.
791
800
.
18.
Yang
,
C.-Y.
, and
Webb
,
R. L.
, 1997, “
Predictive Model for Condensation in Small Hydraulic Diameter Tubes Having Axial Micro-fins
,”
J. Heat Transfer
0022-1481,
119
(
4
), pp.
776
782
.
19.
Shah
,
M. M.
, 1979, “
A General Correlation for Heat Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
0017-9310,
22
(
4
), pp.
547
556
.
20.
Akers
,
W. W.
,
Deans
,
H. A.
, and
Crosser
,
O. K.
, 1959, “
Condensation Heat Transfer Within Horizontal Tubes
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
55
(
29
), pp.
171
176
.
21.
Dobson
,
M. K.
, and
Chato
,
J. C.
, 1998, “
Condensation in Smooth Horizontal Tubes
,”
J. Heat Transfer
0022-1481,
120
(
1
), pp.
193
213
.
22.
Moser
,
K. W.
,
Webb
,
R. L.
, and
Na
,
B.
, 1998, “
A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes
,”
J. Heat Transfer
0022-1481,
120
(
2
), pp.
410
417
.
23.
Hurlburt
,
E. T.
, and
Newell
,
T. A.
, 1999, “
Characteristics of Refrigerant Film Thickness, Pressure Drop, and Condensation Heat Transfer in Annular Flow
,”
HVAC&R Res.
1078-9669,
5
(
3
), pp.
229
248
.
24.
Asali
,
J. C.
,
Hanratty
,
T. J.
, and
Andreussi
,
P.
, 1985, “
Interfacial Drag and Film Height for Vertical Annular Flow
,”
AIChE J.
0001-1541,
31
(
6
), pp.
895
902
.
25.
Sacks
,
P. S.
, 1975, “
Measured Characteristics of Adiabatic and Condensing Single-Component Two-Phase Flow of Refrigerant in a 0.377‐in. Diameter Horizontal Tube
,”
Proceedings of the American Society of Mechanical Engineers Winter Annual Meeting, 75-WA∕HT-24
, Nov. 30–Dec. 4,
ASME
,
New York
, p.
12
.
26.
Dobson
,
M. K.
, 1994,
Heat Transfer and Flow Regimes During Condensation in Horizontal Tubes
, Ph. D., Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL.
27.
Carpenter
,
F. G.
, and
Colburn
,
A. P.
, 1951, “
The Effect of Vapor Velocity on Condensation Inside Tubes
,”
General Discussion of Heat Transfer
, The Institute of Mechanical Engineers and ASME, pp.
20
26
.
28.
Soliman
,
H. M.
,
Schuster
,
J. R.
, and
Berenson
,
P. J.
, 1968, “
A General Heat Transfer Correlation for Annular Flow Condensation
,”
J. Heat Transfer
0022-1481,
90
, pp.
267
276
.
29.
Chen
,
S. L.
,
Gerner
,
F. M.
, and
Tien
,
C. L.
, 1987, “
General Film Condensation Correlations
,”
Exp. Heat Transfer
0891-6152,
1
(
2
), pp.
93
107
.
30.
Cavallini
,
A.
, and
Zecchin
,
R.
, 1974, “
Dimensionless Correlation for Heat Transfer in Forced Convection Condensation
,”
Proceedings of the Sixth International Heat Transfer Conference
, Tokyo, Japan, Vol.
3
, pp.
309
313
.
31.
Chitti
,
M. S.
, and
Anand
,
N. K.
, 1995, “
An Analytical Model for Local Heat Transfer Coefficients for Forced Convective Condensation Inside Smooth Horizontal Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
4
), pp.
615
627
.
32.
Guo
,
Z.
, and
Anand
,
N. K.
, 2000, “
Analytical Model to Predict Condensation of R-410A in a Horizontal Rectangular Channel
,”
J. Heat Transfer
0022-1481,
122
(
3
), pp.
613
620
.
33.
Ibrahim
,
O. M.
, 1994, “
Prediction of Local Heat Transfer Coefficients During Annular Flow Condensation
,”
Proceedings of the 1994 ASME Fluids Engineering Division Summer Meeting. Part 2 (of 18)
, Lake Tahoe, NV, Jun. 19–23,
ASME
,
New York
, Vol.
180
, pp.
77
81
.
34.
Boyko
,
L. D.
, and
Kruzhilin
,
G. N.
, 1967, “
Heat Transfer and Hydraulic Resistance During Condensation of Steam in a Horizontal Tube and in a Bundle of Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
10
(
3
), pp.
361
373
.
35.
Chitti
,
M. S.
, and
Anand
,
N. K.
, 1996, “
Condensation Heat Transfer Inside Smooth Horizontal Tubes for R-22 and R-32∕125 Mixture
,”
HVAC&R Res.
1078-9669,
2
(
1
), pp.
79
101
.
36.
Wang
,
H. S.
, and
Rose
,
J. W.
, 2004, “
Film Condensation in Horizontal Triangular Section Microchannels: A Theoretical Model
,”
Proceedings of the Second International Conference on Microchannels and Minichannels (ICMM2004)
, Rochester, NY, Jun. 17–19,
ASME
,
New York
, pp.
661
666
.
37.
Wang
,
H. S.
,
Rose
,
J. W.
, and
Honda
,
H.
, 2004, “
A Theoretical Model of Film Condensation in Square Section Horizontal Microchannels
,”
Chem. Eng. Res. Des.
0263-8762,
82
(
4
), pp.
430
434
.
38.
Cavallini
,
A.
, Del
Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
, and
Zilio
,
C.
, 2005, “
Condensation Heat Transfer and Pressure Gradient Inside Multiport Minichannels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
45
55
.
39.
Friedel
,
L.
, 1980, “
Pressure Drop During Gas∕Vapor-Liquid Flow in Pipes
,”
Int. Chem. Eng.
0020-6318,
20
(
3
), pp.
352
367
.
40.
Zhang
,
M.
, and
Webb
,
R. L.
, 2001, “
Correlation of Two-Phase Friction for Refrigerants in Small-Diameter Tubes
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
(
3–4
), pp.
131
139
.
41.
Mishima
,
K.
, and
Hibiki
,
T.
, 1996, “
Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiphase Flow
0301-9322,
22
(
4
), pp.
703
712
.
42.
Muller-Steinhagen
,
H.
, and
Heck
,
K.
, 1986, “
A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes
,”
Chem. Eng. Process.
0255-2701,
20
(
6
), pp.
297
308
.
43.
Cavallini
,
A.
,
Censi
,
G.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
, 2002, “
Condensation of Halogenated Refrigerants Inside Smooth Tubes
,”
HVAC&R Res.
1078-9669,
8
(
4
), pp.
429
451
.
44.
Koyama
,
S.
,
Kuwahara
,
K.
, and
Nakashita
,
K.
, 2003, “
Condensation of Refrigerant in a Multi-Port Channel
,”
First International Conference on Microchannels and Minichannels
, Rochester, NY, April 24–25,
AMSE
,
New York
, pp.
193
205
.
45.
Wang
,
W. W.-W.
,
Radcliff
,
T. D.
, and
Christensen
,
R. N.
, 2002, “
A Condensation Heat Transfer Correlation for Millimeter-Scale Tubing With Flow Regime Transition
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
(
5
), pp.
473
485
.
46.
Shin
,
J. S.
, and
Kim
,
M. H.
, 2005, “
An Experimental Study of Flow Condensation Heat Transfer Inside Circular and Rectangular Mini-Channels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
36
44
.
47.
Garimella
,
S.
, and
Bandhauer
,
T. M.
, 2001, “
Measurement of Condensation Heat Transfer Coefficients in Microchannel Tubes
,”
2001 ASME International Mechanical Engineering Congress and Exposition
, Nov. 11–16,
ASME
,
New York
, Vol.
369
, pp.
243
249
.
48.
Kakaç
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
, 1987,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
.
49.
Petukhov
,
B. S.
, 1970, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
0065-2717,
6
, pp.
503
64
.
50.
Chen
,
I. Y.
, and
Kocamustafaogullari
,
G.
, 1987, “
Condensation Heat Transfer Studies for Stratified, Cocurrent Two-Phase Flow in Horizontal Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
6
), pp.
1133
1148
.
51.
Traviss
,
D. P.
, and
Rohsenow
,
W. M.
, 1973, “
Flow Regimes in Horizontal Two-Phase Flow with Condensation
,”
ASHRAE Trans.
0001-2505,
79
(Part 2), pp.
31
39
.
52.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
0360-7275,
45
(
1
), pp.
39
45
.
53.
Chisholm
,
D.
, 1967, “
A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
10
(
12
), pp.
1767
1778
.
54.
Schlichting
,
H.
, and
Gersten
,
K.
, 2000, “
Laminar-Turbulent Transition
,” in
Boundary Layer Theory
,
Springer
,
New York
, pp.
415
490
.
55.
Baroczy
,
C. J.
, 1965, “
Correlation of Liquid Fraction in Two-Phase Flow with Applications to Liquid Metals
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
61
(
57
), pp.
179
191
.
56.
Lee
,
H. J.
, and
Lee
,
S. Y.
, 2001, “
Pressure Drop Correlations for Two-Phase Flow Within Horizontal Rectangular Channels With Small Heights
,”
Int. J. Multiphase Flow
0301-9322,
27
(
5
), pp.
783
796
.
You do not currently have access to this content.