Abstract

Simulations were conducted for air flowing upward in a vertical annular pipe with a rotating outer wall. Simulations concentrated on the occurrence of laminarization and property variations for high heat flux heat transfer. The compressible filtered Navier-Stokes equations were solved using a second-order accurate finite volume method. Low Mach number preconditioning was used to enable the compressible code to work efficiently at low Mach numbers. A dynamic subgrid-scale stress model accounted for the subgrid-scale turbulence. When the outer wall rotated, a significant reduction of turbulent kinetic energy was realized near the rotating wall and the intensity of bursting appeared to decrease. This modification of the turbulent structures was related to the vortical structure changes near the rotating wall. It has been observed that the wall vortices were pushed in the direction of rotation and their intensity increased near the nonrotating wall. The consequent effect was to enhance the turbulent kinetic energy and increase the Nusselt number there.

1.
Murakami
,
M.
, and
Kikuyama
,
K.
, 1980, “
Turbulent Flow in Axially Rotating Pipes
,”
ASME J. Fluids Eng.
0098-2202,
102
, pp.
97
103
.
2.
Kikuyama
,
K.
,
Murakami
,
M.
, and
Nishibori
,
K.
, 1983, “
Development of Three-dimensional Turbulent Boundary Layer in an Axially Rotating Pipe
,”
ASME J. Fluids Eng.
0098-2202,
105
, pp.
154
160
.
3.
Nishibori
,
K.
,
Kikuyama
,
K
, and
Murakami
,
M.
, 1987, “
Laminarization of Turbulent Flow in the Inlet Region of an Axially Rotating Pipe
,”
Bull. JSME
0021-3764,
30
, pp.
255
260
.
4.
Imao
,
S.
, and
Itoh
,
M.
, 1996, “
Turbulent Characteristics of the Flow in an Axially Rotating Pipe
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
444
451
.
5.
Hirai
,
S.
,
Takagi
,
T.
, and
Matsumoto
,
M.
, 1988, “
Predictions of the Laminarization Phenomena in an Axially Rotating Pipe Flow
,”
ASME J. Fluids Eng.
0098-2202,
110
, pp.
424
430
.
6.
Kawamura
,
H.
, and
Mishima
,
T.
, 1992, “
Numerical Prediction of Turbulent Swirling Flow in a Rotating Pipe by a Two-Equation Model of Turbulence
,”
Bull. JSME
0021-3764,
57
, pp.
1251
1256
.
7.
Eggels
,
J.
,
Unger
,
F.
,
Weiss
,
M.
,
Westerweel
,
J.
,
Adrian
,
R.
,
Friedrick
,
R.
, and
Nieuwstadt
,
F.
, 1994, “
Fully Developed Turbulent Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiment
,”
J. Fluid Mech.
0022-1120,
268
, pp.
175
209
.
8.
Orlandi
,
P.
, and
Fatica
,
M.
, 1997, “
Direct Numerical Simulation of Turbulent Flow in a Pipe Rotating About Its Axis
,”
J. Fluid Mech.
0022-1120,
343
, pp.
43
72
.
9.
Becker
,
K.
, and
Kaye
,
J.
, 1962, “
Measurements of Diabatic Flow in an Annulus With an Inner Rotating Cylinder
,”
ASME J. Heat Transfer
0022-1481,
84
, pp.
97
105
.
10.
Bjorklund
,
I. S.
, and
Kays
,
W. M.
, 1959, “
The Heat Transfer Between Concentric Rotating Cylinders
,”
ASME J. Heat Transfer
0022-1481,
81
, pp.
175
186
.
11.
Gazley
,
C.
, 1958, “
Heat-Transfer Characteristics of Rotational and Axial Flow Between Concentric Cylinders
,”
Trans. ASME
0097-6822,
80
, pp.
79
90
.
12.
Lee
,
J. S.
,
Xu
,
X.
, and
Pletcher
,
R. H.
, 2003, “
LES of Compressible Turbulent Annular Pipe Flow with a Rotating Wall
,”
Proc. ASME IMECE
, Nov. 16–21.
13.
Schlichting
,
H.
, 1968,
Boundary Layer Theory
,
McGraw-Hill
, pp.
553
558
.
14.
Hirai
,
S.
,
Takagi
,
T.
,
Tananka
,
K.
, and
Higashiya
,
T.
, 1986, “
Turbulent Heat Transfer to the Flow in a Concentric Annulus With a Rotating Inner Cylinder
,”
8th Int. Heat Transfer Conf.
,
3
, pp.
895
900
.
15.
Yang
,
Z.
, 2000, “
Large Eddy Simulation of Fully Developed Turbulent Flow in a Rotating Pipe
,”
Int. J. Numer. Methods Fluids
0271-2091,
33
, pp.
681
694
.
16.
Xu
,
X.
,
Lee
,
J. S.
, and
Pletcher
,
R. H.
, 2004, “
Large Eddy Simulation of Turbulent Forced Gas Flows in Vertical Pipes with High Heat Transfer Rates
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4113
4123
.
17.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
1760
1765
.
18.
Wang
,
W.
, 1995, “
Coupled Compressible and Incompressible Finite Volume Formulations for the Large Eddy Simulation of Turbulent Flow with and Without Heat Transfer
,” Ph.D. thesis, Iowa State University, Ames, IA.
19.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
0899-8213,
4
, pp.
633
635
.
20.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
, 1991, “
A Dynamic Subgrid-scale Model for Compressible Turbulent and Scalar Transport
,”
Phys. Fluids A
0899-8213,
3
, pp.
2746
2757
.
21.
Dailey
,
L. D.
, 1997, “
Large Eddy Simulation of Turbulent Flows With Variable Property Heat Transfer Using a Compressible Finite Volume Formulation
,” Ph.D. thesis, Iowa State Univ., Ames, IA.
22.
Xu
,
X.
,
Lee
,
J. S.
, and
Pletcher
,
R. H.
, 2002, “
Cartesian Based Finite Volume Formulation for LES of Mixed Convection in a Vertical Turbulent Pipe Flow
,”
Proc. ASME IMECE
, Nov. 17–22,
New Orleans
, LA.
23.
Dalle Donne
,
M.
, and
Merwald
,
E.
, 1973, “
Heat Transfer Friction Coefficients for Turbulent Flow of Air in Smooth Annuli at High Temperature
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
787
801
.
24.
Chung
,
S. Y.
,
Rhee
,
G. H.
, and
Sung
,
H. J.
, 2001, “
Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow
,”
Turbulence and Shear Flow Phenomena, Stockholm
, June 27–29,
1
, pp.
377
382
.
25.
Nouri
,
J. M.
,
Umur
,
H.
, and
Whitelaw
,
J. H.
, 1993, “
Flow of Newtonian and Non-Newtonian Fluids in Concentric and Eccentric Annuli
,”
J. Fluid Mech.
0022-1120,
253
, pp.
617
641
.
26.
Malik
,
M. R.
, 1978, “
Prediction of Laminar and Turbulent Flow Heat Transfer in Annular Passages
,” Ph.D. thesis, Iowa State University, Ames, IA.
27.
Reich
,
G.
, and
Beer
,
H.
, 1989, “
Fluid Flow and Heat Transfer in an Axially Rotating Pipe-1: Effect of Rotation on Turbulent Pipe Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
551
562
.
28.
Bradshaw
,
P.
, 1969, “
The Analogy Between Streamline Curvature and Buoyancy in Turbulent Shear Flow
,”
J. Fluid Mech.
0022-1120,
36
, pp.
177
191
.
You do not currently have access to this content.