A new method for measuring the heating rate (defined as the time rate of change of temperature) and estimating heat flux from the heating rate is proposed. The example problem involves analytic heat conduction in a one-dimensional slab, where the measurement location of temperature or heating rate coincides with the location of the estimated heat flux. The new method involves the solution to a Volterra equation of the second kind, which is inherently more stable than Volterra equations of the first kind. The solution for heat flux from a measured temperature is generally a first kind Volterra equation. Estimates from the new approach are compared to estimates from measured temperatures. The heating rate measurements are accomplished by leveraging the temperature dependent decay rate of thermographic phosphors (TGP). Results indicate that the new data-reduction method is far more stable than the usual minimization of temperature residuals, which results in errors that are 1.5–12 times larger than those of the new approach. Furthermore, noise in TGP measurements was found to give an uncertainty of 4% in the heating rate measurement, which is comparable to the noise introduced in the test case data. Results of the simulations and the level of noise in TGP measurements suggest that this novel approach to heat flux determination is viable.

1.
Holmberg
,
D. G.
, and
Diller
,
T. E.
, 1995, “
High-frequency heat flux sensor calibration and modeling
,”
J. Fluids Eng.
0098-2202,
117
, pp.
659
664
.
2.
Piccini
,
E.
,
Guo
,
S. M.
, and
Jones
,
T. V.
, 2000, “
The development of a new direct-heat-flux gauge for heat-transfer facilities
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
342
349
.
3.
Diller
,
T. E.
, and
Kidd
,
C. T.
, 1997, “
Evaluation of numerical methods for determining heat flux with a null point calorimeter
,” in
Proceedings of the 42nd International Instrumentation Symposium
, Research Triangle Park, NC, pp.
251
262
.
4.
Buttsworth
,
D. R.
, and
Jones
,
T. V.
, 1997, “
Radial conduction effects in transient heat transfer experiments
,”
Aeronaut. J.
0001-9240,
101
, pp.
209
212
.
5.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid crystal measurements of heat transfer and surface shear stress
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
969
986
.
6.
Newton
,
P. J.
,
Yan
,
Y.
,
Stevens
,
N. E.
,
Evatt
,
S. T.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2003, “
Transient heat transfer measurements using thermochromic liquid crystal. Part 1: An improved technique
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
14
22
.
7.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Claire
, Jr.,
C. R.
, 1985,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley–Interscience
, NY.
8.
Guo
,
S. M.
,
Lai
,
C. C.
,
Jones
,
T. V.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
, 1998, “
The application of thin-film technology to measure turbine-vane heat transfer and effectiveness in a film-cooled, engine-simulated environment
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
594
600
.
9.
Dinu
,
C.
,
Beasley
,
D. E.
, and
Figliola
,
R. S.
, 1998, “
Frequency response characteristics of an active heat flux gage
,”
J. Heat Transfer
0022-1481,
120
, pp.
577
582
.
10.
Hadamard
,
J.
, 1923,
Lectures on Cauchys Problems in Linear Partial Differential Equations
,
Yale University Press
, New Haven, CT.
11.
Kirsch
,
A.
, 1996,
An Introduction to the Mathematical Theory of Inverse Problems
,
Springer
, Berlin, Vol.
120
.
12.
Cook
,
W. J.
, 1970, “
Determination of heat transfer rates from transient surface temperature measurements
,”
AIAA J.
0001-1452,
8
, pp.
1366
1368
.
13.
Kendall
,
D. N.
, and
Dixon
,
W. P.
, 1966, “
Heat transfer measurements in a hot shot wind tunnel
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
AES-3
, pp.
596
603
.
14.
Walker
,
D. G.
, and
Scott
,
E. P.
, 1997, “
Evaluation of estimation methods for high unsteady heat fluxes from surface measurements
,”
AIAA J.
0001-1452,
12
, pp.
543
551
.
15.
Buttsworth
,
D. R.
, and
Jones
,
T. V.
, 1998, “
A fast-response high spatial resolution total temperature probe using a pulsed heating technique
,”
J. Turbomach.
0889-504X,
120
, pp.
612
617
.
16.
Dunn
,
M. G.
,
George
,
W. K.
,
Rae
,
W. J.
,
Woodward
,
S. H.
,
Moller
,
J. C.
, and
Seymour
,
P. J.
, 1986, “
Heat flux measurements for the rotor of a full-stage turbine: Part II: Description of analysis technique and typical time-resolved measurements
,”
ASME J. Turbomach.
0889-504X,
108
, pp.
98
107
.
17.
Ehrich
,
F. F.
, 1954, “
Differentiation of experimental data using least squares fitting
,”
J. Aeronaut. Sci.
0095-9812,
22
, pp.
133
134
.
18.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
, 1977,
Solutions of Ill-Posed Problems
,
V. H. Winston & Sons
, Washington, D.C.
19.
George
,
W. K.
,
Rae
,
W. J.
,
Seymour
,
P. J.
, and
Sonnenmeier
,
J. R.
, 1987, “
An evaluation of analog and numerical techniques for unsteady and heat transfer measurements with thin film gauges in transient facilities
,” in
Proceedings of the ASME/JSME Thermal Engineering Joint Conference
,
Honolulu
, HI, Vol.
2
, pp.
611
617
.
20.
Walker
,
D. G.
,
Scott
,
E. P.
, and
Nowak
,
R. J.
, 2000, “
Estimation methods for 2D conduction effects of shock-shock heat fluxes from temperature measurements
,”
AIAA J.
0001-1452,
14
, pp.
533
539
.
21.
Frankel
,
J. I.
, and
Keyhani
,
M.
, 1999, “
Inverse heat conduction: The need for heat rate data for design and diagnostic purposes
,” in
Proceedings of the 18th LASTED International Conference on Modeling, Identification and Control
,
Innsbruck
, Austria, February.
22.
Frankel
,
J.
, and
Osborne
,
G.
, 2004, “
Motivation for the development of heating/cooling rate and heat flux rate sensors for engineering applications
,” in
Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit
.
23.
Lamm
,
P. K.
, 1995, “
Future-sequential regularization methods for ill-posed volterra equations
,”
J. Math. Anal. Appl.
0022-247X,
195
, pp.
469
494
.
24.
Walker
,
D. G.
, and
Schetz
,
J. A.
, 2003, “
A new technique for heat flux determination
,” in
Proceedings of the ASME Summer Heat Transfer Conference
,
Las Vegas
, NV.
25.
Allison
,
S. W.
, and
Gillies
,
G. T.
, 1997, “
Remote thermometry with thermographic phosphors: Instrumentation and applications
,”
Rev. Sci. Instrum.
0034-6748,
68
, pp.
2615
2650
.
26.
Sholes
,
R. R.
, 1980, “
Fluorescent decay thermometry with biological applications
,”
Rev. Sci. Instrum.
0034-6748,
51
, pp.
882
884
.
27.
Feist
,
J. P.
, and
Heyes
,
A. L.
, 2000, “
The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
942
947
.
28.
Allison
,
S. W.
,
Cates
,
M. R.
,
Noel
,
B. W.
, and
Gillies
,
G. T.
, 1988, “
Monitoring permanent-magnet motor heating with phosphor thermometry
,”
IEEE Trans. Instrum. Meas.
0018-9456,
37
, pp.
637
641
.
29.
Necati Özişik
,
M.
, 1968,
Boundary Problems of Heat Conduction
,
Dover
, New York.
30.
Kress
,
R.
, 1989,
Linear Integral Equations
, Vol.
82
in
Applied Mathematical Sciences
,
Springer-Verlag
, Berlin.
31.
Corduneanu
,
C.
, 1991,
Integral Equations and Applications
,
Cambridge University Press
, Cambridge.
32.
Stolz
, Jr.
G.
, 1960, “
Numerical solutions to an inverse problem of heat conduction for simple shapes
,”
J. Heat Transfer
0022-1481,
82
, pp.
20
26
.
33.
Shionoya
,
S.
, and
Yen
,
W. M.
, editors, 1999,
Phosphor Handbook
,
CRC Press
, Boca Raton.
34.
Beck
,
J. V.
, and
Arnold
,
K. J.
, 1977,
Parameter Estimation in Engineering and Science
,
Wiley
, New York.
35.
Hogg
,
Robert V.
, and
Ledolter
,
Johannes
, 1992,
Applied Statistics for Engineers and Physical Scientists
, 2nd ed.,
Macmillan
, NY.
36.
Belding
,
D. F.
, and
Mitchell
,
K. J.
, 1991,
Foundation of Analysis
,
Prentice–Hall
, NJ.
You do not currently have access to this content.