Large eddy simulations are performed in a periodic domain of a rotating square duct with normal rib turbulators. Both the Coriolis force as well as the centrifugal buoyancy forces are included in this study. A direct approach is presented for the unsteady calculation of the nondimensional temperature field in the periodic domain. The calculations are performed at a Reynolds number (Re) of 12,500, a rotation number (Ro) of 0.12, and an inlet coolant-to-wall density ratio Δρ/ρ of 0.13. The predicted time and space-averaged Nusselt numbers are shown to compare satisfactorily with the published experimental data. Time sequences of the vorticity components and the temperature fields are presented to understand the flow physics and the unsteady heat transfer behavior. Large scale coherent structures are seen to play an important role in the mixing and heat transfer. The temperature field appears to contain a low frequency mode that extends beyond a single inter-rib geometric module, and indicates the necessity of using at least two inter-rib modules for streamwise periodicity to be satisfied. Proper orthogonal decomposition (POD) of the flowfield indicates a low dimensionality of this system with almost 99% of turbulent energy in the first 80 POD modes.

1.
Morris, W. D., 1981, Heat Transfer and Fluid Flow in Rotating Coolant Channels, Research Studies Press, Hertfordshire, UK.
2.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages with Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
, pp.
847
857
.
3.
Morris
,
W. D.
, and
Rahmat-Abadi
,
K. F.
,
1996
, “
Convective Heat Transfer in Rotating Ribbed Tubes
,”
Int. J. Heat Mass Transfer
,
39
, pp.
2253
2266
.
4.
Yamawaki
,
D.
,
Obi
,
S.
, and
Masuda
,
S.
,
2002
, “
Heat Transfer in Transitional and Turbulent Boundary Layers with System Rotation
,”
Int. J. Heat Fluid Flow
,
23
, pp.
186
193
.
5.
Acharya
,
S.
, and
Zhou
,
F.
,
2001
, “
Flow and Heat Transfer in Dimpled Two-pass Channel, in Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
424
431
.
6.
Hibbs
,
R.
,
Acharya
,
S.
,
Chen
,
Y.
,
Nikitopoulos
,
D.
, and
Myrum
,
T.
,
1998
, “
Heat Transfer in a Two-Pass Internally Ribbed Turbine Blade Coolant Channel with Cylindrical Vortex Generators
,”
ASME J. Turbomach.
,
120
, pp.
724
734
.
7.
Zhou, F., Lagrone J., and Acharya, S., 2004, “Internal Cooling in 4:1 AR Passages at High Rotation Numbers,” Paper no. GT2004-53501, IGTI Turbo Expo, Vienna.
8.
Han
,
J. C.
, and
Dutta
,
S.
,
2001
, “
Recent Developments in Turbine Blade Internal Cooling, in Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
162
178
.
9.
Bredberg, J., 1997, Turbine Blade Internal Cooling, Chalmers University, Goteborg.
10.
Iacovides
,
H.
, and
Launder
,
B. E.
,
1995
, “
Computational Fluid Dynamics Applied to Internal Gas-Turbine Blade Cooling: A Review
,”
Int. J. Heat Fluid Flow
,
16
, pp.
454
470
.
11.
Naimi
,
M.
, and
Gessner
,
F. B.
,
1997
, “
Calculation of Fully Developed Turbulent Flow in Rectangular Ducts with Two Opposite Roughened Walls
,”
Int. J. Heat Fluid Flow
,
18
, pp.
471
481
.
12.
Iacovides
,
H.
,
1998
, “
Computation of Flow and Heat Transfer Through Rotating Ribbed Passages
,”
Int. J. Heat Fluid Flow
,
19
, pp.
393
400
.
13.
Bonhoff
,
B.
,
Parniex
,
S.
,
Leusch
,
J.
,
Johnson
,
B. V.
,
Schabacker
,
J.
, and
Bolcs
,
A.
,
1999
, “
Experimental and Numerical Study of Developed Flow and Heat Transfer in Coolant Channels with 45 Degree Ribs
,”
Int. J. Heat Fluid Flow
,
20
, pp.
311
319
.
14.
Iacovides
,
H.
, and
Raisee
,
M.
,
1999
, “
Recent Progress in the Computation of Flow and Heat Transfer in Internal Cooling Passages of Turbine Blades
,”
Int. J. Heat Fluid Flow
,
20
, pp.
320
328
.
15.
Saidi
,
A.
, and
Sunden
,
B.
,
2001
, “
On Prediction of Thermal-Hydraulic Characteristics of Square-Sectioned Ribbed Cooling Ducts
,”
ASME J. Turbomach.
,
123
, pp.
614
620
.
16.
Hermanson
,
K.
,
Parneix
,
S.
,
Von Wolfersdorf
,
J.
, and
Semmler
,
K.
,
2001
, “
Prediction of Pressure Loss and Heat Transfer in Internal Cooling Passages
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
448
455
.
17.
Jang
,
Y.-J.
,
Chen
,
H.-C.
, and
Han
,
J.-C.
,
2001
, “
Flow and Heat Transfer in a Rotating Square Channel with 45° Angled Ribs by Reynolds Stress Turbulence Model
,”
ASME J. Turbomach.
,
123
, pp.
124
132
.
18.
Murata
,
A.
, and
Mochizuki
,
S.
,
2000
, “
Large Eddy Simulation with a Dynamic Subgrid-Scale Model of Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct with Transverse Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1243
1259
.
19.
Murata
,
A.
, and
Mochizuki
,
S.
,
2001
, “
Effect of Centrifugal Buoyancy on Turbulent Heat Transfer in an Orthogonally Rotating Square Duct with Transverse or Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
44
, pp.
2739
2750
.
20.
Pallares, J., Grau, F. X., and Davidson, L., 2001, “A Model for Estimating Three-Dimensional Boundary Layers in Rotating Duct Flow at High Rotation Rates,” 2nd International Symposium on Turbulence and Shear Flow Phenomena, Vol. 1, KTH-Stockholm, pp. 359–364.
21.
Roclawski, H., Jacob, J. D., Yang, T., and McDonough, J. M., 2001, “Experimental and Computational Investigation of Flow in Gas Turbine Blade Cooling Passages,” AIAA paper 2925.
22.
Miyake
,
Y.
,
Tsujimoto
,
K.
, and
Nagai
,
N.
,
2002
, “
Numerical Simulation of Channel Flow with a Rib-Roughened Wall
,”
J. Turbul.
,
3
,
35
35
.
23.
Saha, A., and Acharya, S., 2004, “Unsteady Computations for Flow and Heat Transfer in 1:1, 4:1, 1:4 AR Ribbed Coolant Passages with Rotation,” ASME paper No. GT2004-53986.
24.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
,
99
, pp.
180
186
.
25.
Wang
,
G.
, and
Vanka
,
S. P.
,
1995
, “
Convective Heat Transfer in Periodic Wavy Passages
,”
Int. J. Heat Mass Transfer
,
38
, pp.
3219
3230
.
26.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
,
3
(
11
), pp.
2746
2757
.
27.
Vreman
,
B.
,
Guerts
,
B.
, and
Kuerten
,
H.
,
1994
, “
On the Formulation of the Dynamic Mixed Subgrid Scale Model
,”
Phys. Fluids A
,
6
, pp.
4057
4059
.
28.
Tyagi
,
M.
, and
Acharya
,
S.
,
2004
, “
Large Eddy Simulations of Turbulent Flown in Complex and Moving Rigid Geometries With the Immersed Boundary Method
,”
Int. J. Numer. Methods Fluids
, (to be published).
29.
Tyagi, M., 2003, “Large Eddy Simulation of Turbulent Flows in Complex Geometries,” Ph.D. thesis, Mechanical Engineering Department, Louisiana State University.
30.
Wray, A. A., and Hunt, J. C. R., 1989, “Algorithms for Classification of Turbulent Structures, Topological Fluid Mechanics,” Proceedings of the IUTAM symposium, H. K. Moffat and A. Tsinober, eds., Cambridge University Press, Cambridge, UK, pp. 95–104.
31.
Tanaka
,
M.
, and
Kida
,
S.
,
1993
, “
Characterization of Vortex Tubes and Sheets
,”
Phys. Fluids A
,
5
, pp.
2079
2082
.
32.
Dubief
,
Y.
, and
Delcayre
,
F.
,
2000
, “
On Coherent-Vortex Identification in Turbulence
,”
J. Turbul.
,
1
, pp.
1
22
.
33.
Holmes, P., Lumley, J. L., and Berkooz, G., 1996, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press,
34.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures, Part I–III
,”
Q. Appl. Math.
,
XLV
, pp.
561
590
.
You do not currently have access to this content.