Counter-current (vessel–vessel) heat transfer has been postulated as one of the most important heat transfer mechanisms in living systems. Surprisingly, however, the accurate quantification of the vessel–vessel, and vessel–tissue, heat transfer rates has never been performed in the most general and important case of a finite, unheated/heated tissue domain with noninsulated boundary conditions. To quantify these heat transfer rates, an exact analytical expression for the temperature field is derived by solving the 2-D Poisson equation with uniform Dirichlet boundary conditions. The new results obtained using this solution are as follows: first, the vessel–vessel heat transfer rate can be a large fraction of the total heat transfer rate of each vessel, thus quantitatively demonstrating the need to accurately model the vessel–vessel heat transfer for vessels imbedded in tissues. Second, the vessel–vessel heat transfer rate is shown to be independent of the source term; while the heat transfer rates from the vessels to the tissue show a significant dependence on the source term. Third, while many previous studies have assumed that (1) the total heat transfer rate from vessels to tissue is zero, and/or (2) the heat transfer rates from paired vessels (of different sizes and at different temperatures) to tissue are equal to each other the current analysis shows that neither of these conditions is met. The analytical solution approach used to solve this two vessels problem is general and can be extended for the case of “N” arbitrarily located vessels.

1.
Hahn, G. M., 1982, Hyperthermia and Cancer, Plenum Press, New York.
2.
Xu
,
L. X.
,
Holmes
,
K. R.
,
Moore
,
B.
,
Chen
,
M. M.
, and
Arkin
,
H.
,
1994
, “
Microvascular Architecture With in the Pig Kidney Cortex
,”
Microvasc. Res.
,
47
, pp.
293
307
.
3.
Rommel
,
S. A.
, and
Caplan
,
H.
,
2003
, “
Vascular Adaptations for Heat Conservation in the Tail of Florida Manatees (Trichechus Manatus Latirostris)
,”
J. Anat.
,
202
, pp.
343
353
.
4.
Pabst
,
D. A.
,
Rommel
,
S. A.
,
McLellan
,
W. A.
,
Williams
,
T. M.
, and
Rowles
,
T. K.
,
1995
, “
Thermoregulation of the Intra-Abdominal Testes of the Bottlenose Dolphin (Tursiops Truncatus) During Exercise
,”
J. Exp. Biol.
,
198
, pp.
221
226
.
5.
Geist
,
N. R.
,
2000
, “
Nasal Respiratory Turbinate Function in Birds
,”
Physiol. Biochem. Zoolo.
,
73
(
5
), pp.
581
589
.
6.
Mitchell
,
J. W.
, and
Myers
,
G. E.
,
1968
, “
An Analytical Model of the Counter-Current Heat Exchange Phenomena
,”
Biophys. J.
,
8
, pp.
897
911
.
7.
Zhu
,
L.
,
2000
, “
Theoretical Evaluation of Contributions of Heat Conduction and Counter-Current Heat Exchange in Selective Brain Cooling in Humans
,”
Ann. Biomed. Eng.
,
28
, pp.
269
277
.
8.
DiFelice
, Jr.,
R. F.
, and
Bau
,
H. H.
,
1983
, “
Conductive Heat Transfer Between Eccentric Cylinders With Boundary Conditions of the Third Kind
,”
ASME J. Heat Transfer
,
105
, pp.
678
680
.
9.
Lemons
,
D. E.
,
Chien
,
S.
,
Crawshaw
,
L. I.
,
Weinbaum
,
S.
, and
Jiji
,
L. M.
,
1987
, “
Significance of Vessel Size and Type in Vascular Heat Transfer
,”
Am. J. Phys.
,
253
, pp.
R128–R135
R128–R135
.
10.
Chato
,
J. C.
,
1980
, “
Heat Transfer to Blood Vessels
,”
J. Biomech. Eng.
,
102
, pp.
110
118
.
11.
Wissler
,
E. H.
,
1988
, “
An Analytical Solution Countercurrent Heat Transfer Between Parallel Vessels With a Linear Axial Temperature Gradient
,”
J. Biomech. Eng.
,
110
, pp.
254
256
.
12.
Shitzer
,
A.
,
Stroschein
,
L. A.
,
Gonzalez
,
R. R.
, and
Pandolf
,
K. B.
,
1997
, “
Numerical Analysis of an Extremity in Cold Environment Including Counter-Current Arterio-Venous Heat Exchange
,”
J. Biomech. Eng.
,
119
,
179
186
.
13.
Baish
,
J. W.
, and
Ayyaswamy
,
P. S.
,
1986
, “
Small-Scale Temperature Fluctuations in Perfused Tissue During Local Hyperthermia
,”
J. Biomech. Eng.
,
108
, pp.
246
250
.
14.
Baish
,
J. W.
,
Ayyaswamy
,
P. S.
, and
Foster
,
K. R.
,
1986
, “
Heat Transport Mechanisms in Vascular Tissues: A Model Comparison
,”
J. Biomech. Eng.
,
108
, pp.
324
331
.
15.
Zhu
,
M.
,
Weinbaum
,
S.
, and
Jiji
,
L. M.
,
1990
, “
Heat Exchange Between Unequal Countercurrent Vessels Asymmetrically Embedded in a Cylinder With Surface Convection
,”
Int. J. Heat Mass Transfer
,
33
, pp.
2275
2283
.
16.
Zhu
,
M.
,
Weinbaum
,
S.
,
Jiji
,
L. M.
, and
Lemons
,
D. E.
,
1988
, “
On the Generalization of the Weinbaum–Jiji Bioheat Equation to Microvessels of Unequal Size; The Relation Between the Near Field and Local Average Tissue Temperatures
,”
J. Biomech. Eng.
,
110
, pp.
74
81
.
17.
Wu
,
Y. L.
,
Weinbaum
,
S.
, and
Jiji
,
L. M.
,
1993
, “
A New Analytic Technique for 3-D Heat Transfer From a Cylinder With Two or More Axially Interacting Eccentrically Embedded Vessels With Application to Countercurrent Blood Flow
,”
Int. J. Heat Mass Transfer
,
36
, pp.
1073
1083
.
18.
Zhu
,
L.
,
Lemons
,
D. E.
, and
Weinbaum
,
S.
,
1996
, “
Microvascular Thermal Equilibration in Rat Cremaster Muscle
,”
Ann. Biomed. Eng.
,
24
, pp.
109
123
.
19.
Song
,
J.
,
Xu
,
L. X.
,
Lemons
,
D. E.
, and
Weinbaum
,
S.
,
1997
, “
Enhancement in the Effective Thermal Conductivity in Rat Spinotrapezius Due to Vasoregulation
,”
J. Biomech. Eng.
,
119
, pp.
461
468
.
20.
Song
,
J.
,
Xu
,
L. X.
,
Lemons
,
D. E.
, and
Weinbaum
,
S.
,
1997
, “
Microvascular Thermal Equilibration in Rat Spinotrapezius Muscle
,”
Ann. Biomed. Eng.
,
27
, pp.
56
66
.
21.
Van Leeuwen
,
G. M. J.
,
Kotte
,
A. N. T. J.
,
Crezee
,
J.
, and
Lagendijk
,
J. J. W.
,
1997
, “
Tests of the Geometrical Description of Blood Vessels in a Thermal Model Using Counter-Current Geometries
,”
Phys. Med. Biol.
,
42
, pp.
1515
1532
.
22.
Zhu
,
L.
, and
Weinbaum
,
S.
,
1995
, “
A Model for Heat Transfer From Embedded Blood Vessels in 2-D Tissue Preparations
,”
J. Biomech. Eng.
,
117
, pp.
64
73
.
23.
He
,
Q.
,
Zhu
,
L.
,
Lemons
,
D. E.
, and
Weinbaum
,
S.
,
2002
, “
Experimental Measurements of the Temperature Variation Along Artery–Vein Pairs From 200 to 1000 μm Diameter in Rat Hind Limb
,”
J. Biomech. Eng.
,
124
, pp.
656
661
.
24.
Zhu
,
L.
,
Xu
,
L. X.
,
He
,
Q.
, and
Weinbaum
,
S.
,
2002
, “
A New Fundamental Bioheat Equation for Muscle Tissue—Part 2: Temperature of SAV Vessels
,”
J. Biomech. Eng.
,
124
, pp.
121
132
.
25.
He
,
Q.
,
Zhu
,
L.
, and
Weinbaum
,
S.
,
2003
, “
Effect of Blood Flow on Thermal Equilibration and Venous Rewarming
,”
Ann. Biomed. Eng.
,
31
, pp.
659
666
.
26.
Lebedev, N. N., Skalskaya, I. P., and Uflyand, Y. S., 1979, Worked Problems in Applied Mathematics, Dover, New York.
27.
El-Saden
,
M. R.
,
1961
, “
Heat Conduction in an Eccentrically Hollow, Infinitely Long Cylinder With Internal Heat Generation
,”
ASME J. Heat Transfer
,
83
, pp.
510
512
.
28.
El-Shaarawi
,
M. A.
, and
Mukheimer
,
I.
,
1995
, “
Unsteady Conduction in Eccentric Annuli
,”
Heat Mass Transfer
,
30
, pp.
249
257
.
29.
Shrivastava
,
D.
, and
Roemer
,
R. B.
,
2004
, “
An Analytical Derivation of Source Term Dependent, 2-D Generalized Poisson Conduction Shape Factors
,”
Int. J. Heat Mass Transfer
,
47
(
19-20
), pp.
4293
4300
.
30.
Roemer
,
R. B.
, and
Dutton
,
A. W.
,
1998
, “
A Generic Tissue Convective Energy Balance Equation: Part 1—Theory and Derivation
,”
J. Biomech. Eng.
,
120
, pp.
395
404
.
31.
Shrivastava, D., and Roemer, R. B., 2004, “An Analytical Study of Heat Transfer in Finite Tissue With Two Blood Vessels and General Dirichlet Boundary Conditions,” Int. J. Heat Mass Transfer, (accepted).
32.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in Resting Human Forearm
,”
J. Appl. Phys.
,
1
, pp.
93
122
.
33.
Brown, J. W., and Churchill, R. V., 1996, Complex Variables and Applications, McGraw-Hill, New York.
34.
Devashish, 2004, “Development and Evaluation of Tissue Convective Energy Balance Equation,” Ph.D. dissertation, University of Utah, Salt Lake City, UT.
35.
Wehner
,
H.
,
Ardenne
,
A. V.
, and
Kaltofen
,
S.
,
2001
, “
Whole-Body Hyperthermia With Water-Filtered Infrared Radiation: Technical–Physical Aspects and Clinical Experiences
,”
Int. J. Hyperthermia
,
17
, pp.
19
30
.
36.
Landry
,
J.
, and
Marceau
,
N.
,
1978
, “
Rate-Limiting Events in Hyperthermic Cell Killing
,”
Radiat. Res.
,
75
, pp.
573
585
.
37.
Milnor, W. R., 1990, Cardiovascular Physiology, Oxford University Press, New York.
38.
Gray, H., 1978, Gray’s Anatomy, Descriptive and Surgical, Barnes andd Nobel Inc., New York.
You do not currently have access to this content.