Abstract

A detailed, two-dimensional, laminar, flame spread model over a thin solid is solved in both a normal gravity downward spread configuration and in a microgravity quiescent atmosphere configuration. The radiation transfer equation is solved using discrete ordinates methods. While flame radiation plays only a secondary role in normal gravity spread, it is crucial in microgravity. By using the solid fuel total emittance and total absorptance as parameters, systematic computations have been performed to isolate the roles of flame radiative loss to the ambient, absorption of flame radiation by the solid and solid emission. Computations show that depending on the values of the solid radiation parameters, trend reversals in spread rate and extinction limits between flames in normal gravity and in microgravity can occur.

References

1.
De Ris
,
J. N.
,
1969
, “
Spread of a Laminar Diffusion Flame
,”
Proc. Combust. Inst., Pittsburgh, PA
,
12
, pp.
241
252
.
2.
Fakheri, A., and Olson, S. L., 1989, “The Effects of Radiative Heat Loss on Microgravity Flame Spread,” AIAA Paper No. 89-0504.
3.
Bhattacharjee
,
S.
, and
Altenkirch
,
R. A.
,
1990
, “
Radiation Controlled, Opposed-Flow Flame Spread in a Microgravity Environment
,”
Proc. Combust. Inst., Pittsburgh, PA
,
23
, pp.
1627
1633
.
4.
Bhattacharjee
,
S.
,
Altenkirch
,
R. A.
,
Olson
,
S. L.
, and
Sotos
,
R. G.
,
1991
, “
Heat Transfer to a Thin Solid Combustible in Flame Spreading at Microgravity
,”
ASME J. Heat Transfer
,
113
, pp.
670
676
.
5.
Chen
,
C.-H.
, and
Cheng
,
M.-C.
,
1994
, “
Gas Phase Radiative Effects on Downward Flame Spread in Low Gravity
,”
Combust. Sci. Technol.
,
97
, pp.
63
83
.
6.
T’ien, J. S., Shih, H. Y., Jiang, C. B., Ross, H. D., Miller, J., Fernandez-Pello, A. C., Torero, J. L., and Walther, D., 2001, “Mechanisms of Flame Spread and Smolder Wave Propagation,” in Microgravity Combustion: Fire in Free Fall, H. Ross, ed., Academic Press.
7.
Olson
,
S. L.
,
Ferkul
,
P. V.
, and
T’ien
,
J. S.
,
1988
, “
Near-Limit Flame Spread Over a Thin Fuel in Microgravity
,”
Proc. Combust. Inst.
,
22
, pp.
1213
1222
.
8.
Bhattacharjee
,
S.
,
Altenkirch
,
R. A.
, and
Sacksteder
,
K.
,
1996
, “
The Effect of Ambient Pressure on Flamespread Over Thin Cellulosic Fuel in a Quiescente, Microgravity Environment
,”
ASME J. Heat Transfer
,
118
, pp.
181
190
.
9.
Lin
,
T.-H.
, and
Chen
,
C.-H.
,
1999
, “
Influence of Two-Dimensional Gas Phase Radiation on Downward Flame Spread
,”
Combust. Sci. Technol.
,
141
, pp.
83
106
.
10.
Grayson
,
G.
,
Sacksteder
,
K. R.
,
Ferkul
,
P. V.
, and
T’ien
,
J. S.
,
1994
, “
Flame Spreading Over a Thin Solid in Low-Speed Concurrent Flow-Drop Tower Experimental Results and Comparison With Theory
,”
Microgravity Sci. Technol.
,
7
(
2
), pp.
187
195
.
11.
Dietrich
,
D. L.
,
Ross
,
H. D.
,
Shu
,
Y.
,
Chang
,
P.
, and
T’ien
,
J. S.
,
2000
, “
Candle Flame in Non-Buoyant Atmospheres
,”
Combust. Sci. Technol.
,
156
, pp.
1
24
.
12.
Bedir
,
H.
,
T’ien
,
J. S.
, and
Lee
,
H. S.
,
1997
, “
Comparison of Different Radiation Treatments for a One-Dimensional Diffusion Flame
,”
Combust. Theory Modell.
,
1
, pp.
395
404
.
13.
Feier
,
I. I.
,
Shih
,
H. Y.
,
Sacksteder
,
K. R.
, and
Tien
,
J. S.
,
2002
, “
Upward Flame Spread Over Thin Solids in Partial Gravity
,”
Proc. Combust. Inst., Pittsburgh, PA
,
29
, pp.
2569
2577
.
14.
Ferkul
,
P. V.
, and
T’ien
,
J. S.
,
1994
, “
A Model of Low-Speed Concurrent Flow Flame Spread Over a Thin Fuel
,”
Combust. Sci. Technol.
,
99
, pp.
345
370
.
15.
Jiang, C. B., 1995, “A Model of Flame Spread Over a Thin Solid in Concurrent Flow With Flame Radiation,” Ph.D. thesis, Case Western Reserve University, Cleveland, OH.
16.
Di Blasi
,
C.
,
1995
, “
Predictions of Wind-Opposed Flame Spread Rates and Energy Feedback Analysis for Charring Solids in a Microgravity Environment
,”
Combust. Flame
,
100
, pp.
332
340
.
17.
Rhatigan
,
J. L.
,
Bedir
,
H.
, and
T’ien
,
J. S.
,
1998
, “
Gas-Phase Radiative Effects on the Burning and Extinction of a Solid Fuel
,”
Combust. Flame
,
112
, pp.
231
241
.
18.
Tien, C. L., 1968, “Thermal Radiation Properties of Gases,” Advances in Heat Transfer, Academic Press, New York, 5, pp. 234–254.
19.
Kumar
,
A.
,
Shih
,
H.
, and
T’ien
,
J. S.
,
2003
, “
A Comparison of Extinction Limits and Spreading Rates in Opposed and Concurrent Spreading Flames Over Thin Solids
,”
Combust. Flame
,
132
, pp.
667
677
.
20.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Pub. Co., New York.
21.
Fiveland
,
W. A.
,
1984
, “
Discerete Ordinates Solutions of the Radiative Transfer Equation for Rectangular Enclosures
,”
ASME J. Heat Transfer
,
106
, pp.
699
706
.
22.
Kim
,
T. K.
, and
Lee
,
H. S.
,
1989
, “
Radiative Transfer in Two-Dimensional Anisotropic Scattering Media With Collimated Incidence
,”
J. Quant. Spectrosc. Radiat. Transf.
,
42
, pp.
225
238
.
23.
Frey
, Jr.,
A. E.
, and
T’ien
,
J. S.
,
1976
, “
Near-Limit Flames Over Paper Samples
,”
Combust. Flame
,
26
, pp.
263
289
.
24.
T’ien
,
J. S.
,
1986
, “
Diffusion Flame Extinction at Small Stretch Rates: The Mechanism of Radiative Loss
,”
Combust. Flame
,
65
, pp.
31
34
.
25.
T’ien
,
J. S.
,
1990
, “
The Possibility of a Reversal of Material Flammability Ranking From Normal Gravity to Microgravity
,”
Combust. Flame
,
80
, pp.
355
357
.
26.
Honda
,
L. K.
, and
Ronney
,
P. D.
,
1988
, “
Effect of Ambient Atmosphere on Flame Spread at Microgravity
,”
Combust. Sci. Technol.
,
133
, pp.
267
291
.
27.
Pettegrew, R., Street, K., Plitch, N., T’ien, J. S., and Morrison, P., 2003, “Measurement and Evaluation of the Radiative Properties of a Thin Solid Fuels,” AIAA Paper No. 2003-0511.
28.
Bhattacharjee
,
S.
, and
Altenkirch
,
R. A.
,
1991
, “
The Effect of Surface Radiation on Flame Spread in a Quiescent, Microgravity Environment
,”
Combust. Flame
,
84
, pp.
160
169
.
You do not currently have access to this content.