Abstract

The heat transport in two-layer fluid systems has been investigated numerically for slice-type semicircular pools with internal heat sources. The fixed interface model has been applied to study natural convection in the system of the immiscible fluids. The double-diffusion model has been employed to describe the heat transfer and mixing for the miscible fluids. The numerical results are compared to data measured in the SIMECO experiments. Based on the numerical simulations, the effect of the ratio of the fluid properties has been quantified. The results are of interest for the corium melt coolability in a postulated severe accident scenario in a light water reactor.

References

1.
Theofanous
,
T. G.
,
Liu
,
C.
,
Additon
,
S.
,
Angelini
,
S.
,
Kymaelaeinen
,
O.
, and
Salmassi
,
T.
,
1997
, “
In-Vessel Coolability and Retention of a Core Melt
,”
Nucl. Eng. Des.
,
169
, pp.
1
48
.
2.
Tuomisto
,
H.
, and
Theofanous
,
T. G.
,
1994
, “
A Consistent Approach to Severe Accident Management
,”
Nucl. Eng. Des.
,
148
, pp.
171
183
.
3.
Asmolov
,
V.
,
Ponomarev-Stepnoy
,
N.
,
Strizhov
,
V.
, and
Sehgal
,
B. R.
,
2001
, “
Challenges Left in the Area of In-Vessel Melt Retention
,”
Nucl. Eng. Des.
,
209
, pp.
87
96
.
4.
Dhir
,
V. K.
,
1997
, “
Heat Transfer From Heat-Generating Pools and Particulate Beds
,”
Adv. Heat Transfer
,
29
, pp.
1
57
.
5.
Fieg, G., 1976, “Experimental Investigation of Heat Transfer Characteristics in Liquid Layers With Internal Heat Sources,” Proc. Int. Meet. on Fast Reactor Safety and Related Physics, USERDA Conf. 761001, pp. 2047–2055.
6.
Schramm, R., and Reineke, H. H., 1978, “Natural Convection in a Horizontal Layer of Two Different Fluids With Internal Heat Sources,” Proc. 6th Int. Heat Transfer Conf., 2, Paper NC-20, National Research Council of Canada.
7.
Kulacki, F. A., and Nguen, A. T., 1981, “Hydrodynamic Instability and Thermal Convection in a Horizontal Layer of Two Immiscible Fluids With Internal Heat Generation,” NUREG/CR-2619 Report.
8.
Gubaidullin
,
A. A.
,
2003
, “
Correlations for Natural Convection Heat Transfer in Two-Layer Fluids With Internal Heat Generation
,”
Int. J. Heat Mass Transfer
,
46
, pp.
3935
3940
.
9.
Sehgal, B. R., Bui, V. A., Dinh, T. N., Green, J. A., and Kolb, G., 1998, “SIMECO Experiments on In-Vessel Melt Pool Formation and Heat Transfer With and Without a Metallic Layer,” NEA/CSNI/R(98)18, Proc. OECD/CSNI Workshop on In-Vessel Core Debris Retention and Coolability, Garching, Germany.
10.
Kolb, G., Theerthan, S. A., and Sehgal, B. R., 2000, “Natural Convection in Stable Stratified Layers With Volumetric Heat Generation in the Lower Layer,” CD Proc. 34th National Heat Transfer Conf., Aug. 20–22, Pittsburgh, PA.
11.
Theerthan
,
S. A.
,
Kolb
,
G.
, and
Sehgal
,
B. R.
,
2001
, “
Double-Diffusive Convection in a Semicircular Slice With Internal Heat Generation in One or Both Layers
,”
Exp. Heat Transfer
,
14
(
4
), pp.
283
297
.
12.
Gubaidullin, A. A., 2002, “Natural Convection Heat Transfer in Two-Fluid Stratified Pools With Internal Heat Sources,” Ph.D. thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.
13.
Haberstroh
,
R. D.
, and
Reinders
,
R. D.
,
1974
, “
Conducting-Sheet Model for Natural Convection Through a Density-Stratified Interface
,”
Int. J. Heat Mass Transfer
,
17
, pp.
307
311
.
14.
Simonovskii, I. B., 1979, “Numerical Investigation of Convection in a System of Two Immiscible Fluids Heated From Below,” Convection Flows and Hydrodynamic Stability, Sverdlovsk (in Russian).
15.
Prakash
,
A.
, and
Koster
,
J. M.
,
1996
, “
Steady Rayleigh-Be´nard Convection in Two-Layer System of Immiscible Liquids
,”
ASME J. Heat Transfer
,
118
, pp.
366
373
.
16.
Koster
,
J. M.
, and
Nguen
,
K.
,
1996
, “
Steady Natural Convection in a Double Layer of Immiscible Liquids With Density Inversion
,”
Int. J. Heat Mass Transfer
,
39
(
3
), pp.
467
478
.
17.
Huppert
,
H. E.
, and
Turner
,
J. S.
,
1981
, “
Double-Diffusive Convection
,”
J. Fluid Mech.
,
106
, pp.
299
329
.
18.
Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., 1988, Buoyancy-Induced Flows and Transport, Springer, Chap. 9.
19.
Wirtz
,
R. A.
,
1976
, “
The Effect of Solute Layering on Lateral Heat Transfer in an Enclosure
,”
Int. J. Heat Mass Transfer
,
20
, pp.
841
846
.
20.
Hyun
,
M. T.
, and
Bergman
,
B. L.
,
1995
, “
Direct Simulation of Double-Diffusive Layered Convection
,”
ASME J. Heat Transfer
,
117
, pp.
334
339
.
21.
CFDS-FLOW3D, 1994, Release 3.3, User Manual.
22.
Gubaidullin, A. A., and Sehgal, B. R., 2000, “Numerical Analysis of Mixing in a Double-Diffusive System,” CD Proc. 34th ASME National Heat Transfer Conference, Aug. 20–22, Pittsburgh, PA.
23.
Gubaidullin, A. A., and Sehgal, B. R., 2001, “Numerical Analysis of Natural Convection in a Double-Layer Immiscible System,” CD Proc. 9th International Conference on Nuclear Engineering (ICONE-9), April 8-12, Nice, France.
24.
Bergman
,
B. L.
, and
Ungan
,
A.
,
1988
, “
A Note on Lateral Heating in a Double-Diffusive System
,”
J. Fluid Mech.
,
194
, pp.
175
186
.
25.
Nourgaliev
,
R. R.
,
Dinh
,
T. N.
, and
Sehgal
,
B. R.
,
1997
, “
Effect of Fluid Prandtl Number on Heat Transfer Characteristics in Internally Heated Liquid Pools With Rayleigh Numbers up to 1012,
Nucl. Eng. Des.
,
169, pp.
165
184
.
26.
Nourgaliev
,
R. R.
, and
Dinh
,
T. N.
,
1997
, “
An Investigation of Turbulence Characteristics in an Internally Heated Unstably Stratified Fluid Layer
,”
Nucl. Eng. Des.
,
178
, pp.
235
258
.
27.
Dinh
,
T. N.
, and
Nourgaliev
,
R. R.
,
1997
, “
Turbulence Modeling for Large Volumetrically Heated Liquid Pools
,”
Nucl. Eng. Des.
,
169
, pp.
131
150
.
28.
Hanjalić
,
K.
,
2002
, “
One-Point Closure Models for Buoyancy-Driven Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
34
, pp.
321
347
.
29.
Turner
,
J. S.
,
1968
, “
The Coupled Turbulent Transport of Salt and Heat Across a Sharp Density Interface
,”
Int. J. Heat Mass Transfer
,
8
, pp.
759
767
.
30.
Mayinger, F., Jahn, M., Reineke, H. H., and Steinbrenner, V., 1976, “Examination of Thermal-Hydraulic Processes and Heat Transfer in a Core Melt,” BMFT RS 48/1, Institut fu¨r Verfahrenstechnik der T. U., Hanover FRG.
You do not currently have access to this content.