Abstract

The three-dimensional axisymmetry-breaking instability of an axisymmetric convective flow in a vertical cylinder with a partially heated sidewall is studied numerically. The central part of the sidewall is maintained at constant temperature, while its upper and lower parts are thermally insulated. The dependence of the critical Grashof number on the cylinder aspect ratio (A=height/radius) is obtained for a fixed value of the Prandtl number, Pr=0.021, and fixed length of the heated central region, equal to the cylinder radius. Three different modes of the most dangerous three-dimensional perturbations, which replace each other with the variation of the aspect ratio, are found. Comparison with experiment shows a good agreement at the aspect ratio A=8 and 12, while at A=4 a significant disagreement is observed. Possible reasons for this disagreement are discussed. At A=4, the dependence of the critical Grashof number on the Prandtl number is studied in the range 0<Pr<0.05, to rule out the possibility that the disagreement is due to uncertainty in values of fluid properties. The similarities and differences of instabilities in the cylindrical and rectangular geometries are examined. The computations are carried out using two independent numerical approaches, which cross-validate each other.

References

1.
Müller
,
G.
,
1993
, “
Convective Instabilities in Melt Growth Configurations
,”
J. Cryst. Growth
,
128
, pp.
26
36
.
2.
Müller, G., and Ostrogorsky, A., 1994, “Convection in Melt Growth,” in Handbook of Crystal Growth, D. T. J. Hurle, ed., 2, North-Holland, Amsterdam, pp. 711–781.
3.
Jaluria
,
Y.
,
2001
, “
Fluid Flow Phenomena in Materials Processing—The 2000 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
123
, pp.
173
210
.
4.
Hurle
,
D. T. J.
,
1966
, “
Temperature Oscillations in Molten Metals and Their Relationship to Growth Striae in Melt-Grown Crystals
,”
Philos. Mag.
,
13
, pp.
305
310
.
5.
Benz
,
K. W.
, and
Dold
,
P.
,
2002
, “
Crystal Growth Under Microgravity: Present Results and Future Prospects Towards the International Space Station
,”
J. Cryst. Growth
,
237–239
, pp.
1638
1645
.
6.
Selver
,
R.
,
Kamotani
,
Y.
, and
Ostrach
,
S.
,
1998
, “
Natural Convection of a Liquid Metal in Vertical Cylinders Heated Locally From the Side
,”
ASME J. Heat Transfer
,
120
, pp.
108
114
.
7.
Rosenblat
,
S.
,
1982
, “
Thermal Convection in a Vertical Cylinder
,”
J. Fluid Mech.
,
122
, pp.
395
410
.
8.
Neumann
,
G.
,
1990
, “
Three-Dimensional Numerical Simulation of Buoyancy-Driven Convection in Vertical Cylinders Heated From Below
,”
J. Fluid Mech.
,
214
, pp.
559
578
.
9.
Hardin
,
G. R.
,
Sani
,
R. L.
,
Henry
,
D.
, and
Roux
,
B.
,
1990
, “
Buoyancy-Driven Instability in a Vertical Cylinder: Binary Fluids With Soret Effect. Part 1. General Theory and Stationary Stability Results
,”
Int. J. Numer. Methods Fluids
,
10
, pp.
79
117
.
10.
Garandet
,
J. P.
, and
Albousiérre
,
T.
,
1999
, “
Bridgman Growth: Modeling and Experiments
,”
Prog. Cryst. Growth Charact. Mater.
,
38
, pp.
73
131
.
11.
Monberg, E., 1994, “Bridgman and Related Growth Techniques,” in Handbook of Crystal Growth, D. T. J. Hurle, ed., North-Holland, Amsterdam, pp. 52–97.
12.
Cliffe
,
K. A.
,
Spence
,
A.
, and
Tavener
,
S. J.
,
2000
, “
The Numerical Analysis of Bifurcation Problems With Application to Fluid Mechanics
,”
Acta Numerica
,
9
, pp.
39
131
.
13.
Gadoin
,
E.
,
Le Quere
,
P.
, and
Daube
,
O.
,
2001
, “
A General Methodology for Investigating Flow Instabilities in Complex Geometries: Application to Natural Convection in Enclosures
,”
Int. J. Numer. Methods Fluids
,
37
, pp.
175
208
.
14.
Sanchez
,
J.
,
Marques
,
F.
, and
Lopez
,
J. M.
,
2002
, “
A Continuation and Bifurcation Technique for Navier-Stokes Flows
,”
J. Comput. Phys.
,
180
, pp.
78
98
.
15.
Gelfgat
,
A. Yu.
,
2001
, “
Two- and Three-Dimensional Instabilities of Confined Flows: Numerical Study by a Global Galerkin Method
,”
Computational Fluid Dynamics Journal
,
9
, pp.
437
448
.
16.
Gelfgat
,
A. Yu.
, and
Bar-Yoseph
,
P. Z.
,
2004
, “
Multiple Solutions and Stability of Confined Convective and Swirling Flows—A Continuing Challenge
,”
Int. J. Numer. Methods Heat Fluid Flow
,
14
, pp.
213
241
.
17.
Baumgartl
,
J.
,
Budweiser
,
W.
,
Müller
,
G.
, and
Neumann
,
G.
,
1989
, “
Studies of Buoyancy Driven Convection in a Vertical Cylinder With Parabolic Temperature Profile
,”
J. Cryst. Growth
,
97
, pp.
9
17
.
18.
Müller
,
G.
,
Neumann
,
G.
, and
Weber
,
W.
,
1984
, “
Natural Convection in Vertical Bridgman Configuration
,”
J. Cryst. Growth
,
70
, pp.
78
93
.
19.
Wanschura
,
M.
,
Kuhlmann
,
H. C.
, and
Rath
,
H. J.
,
1996
, “
Three-Dimensional Instability of Axisymmetric Buoyant Convection in Cylinders Heated From Below
,”
J. Fluid Mech.
,
326
, pp.
399
415
.
20.
Gelfgat
,
A. Yu.
,
Bar-Yoseph
,
P. Z.
,
Solan
,
A.
, and
Kowalewski
,
T.
,
1999
, “
An Axisymmetry—Breaking Instability in Axially Symmetric Natural Convection
,”
Int. J. Transport Phenomena
,
1
, pp.
173
190
.
21.
Barwölff
,
G.
,
König
,
F.
, and
Seifert
,
G.
,
1997
, “
Thermal Buoyancy Convection in Vertical Zone Melting Configurations
,”
ZAMM
,
10
, pp.
757
766
.
22.
Kaiser
,
Th.
, and
Benz
,
K. W.
,
1998
, “
Floating-Zone Growth of Silicon in Magnetic Fields. III. Numerical Simulation
,”
J. Cryst. Growth
,
183
, pp.
564
572
.
23.
Gelfgat
,
A. Yu.
,
Bar-Yoseph
,
P. Z.
, and
Solan
,
A.
,
2000
, “
Axisymmetry Breaking Instabilities of Natural Convection in a Vertical Bridgman Growth Configurations
,”
J. Cryst. Growth
,
220
, pp.
316
325
.
24.
Szmyd
,
J. S.
,
Jaszczur
,
M.
, and
Ozoe
,
H.
,
2002
, “
Numerical Calculation of Spoke Pattern in Bridgman Top Seeding Convection
,”
Numer. Heat Transfer, Part A
,
41
, pp.
685
695
.
25.
Braunsfurth
,
M. G.
, and
Mullin
,
T.
,
1996
, “
An Experimental Study of Oscillatory Convection in Liquid Gallium
,”
J. Fluid Mech.
,
327
, pp.
199
219
.
26.
Gelfgat
,
A. Yu.
,
Bar-Yoseph
,
P. Z.
, and
Yarin
,
A. L.
,
1997
, “
On Oscillatory Instability of Convective Flows at Low Prandtl Number
,”
ASME J. Fluids Eng.
,
119
, pp.
823
830
.
27.
Gelfgat
,
A. Yu.
,
Bar-Yoseph
,
P. Z.
, and
Yarin
,
A. L.
,
1999
, “
Stability of Multiple Steady States of Convection in Laterally Heated Cavities
,”
J. Fluid Mech.
,
388
, pp.
315
334
.
28.
Erenburg, V., Gelfgat, A. Yu., Kit, E., Bar-Yoseph, P. Z., and Solan, A., 2002, “Natural Convection in a Rectangular Cavity With Piece-Wise Heated Vertical Walls: Multiple States, Stability and Bifurcations,” Proc. 12th Heat Transier Conf., Grenoble, France, pp. 459–464.
29.
Erenburg
,
V.
,
Gelfgat
,
A. Yu.
,
Kit
,
E.
,
Bar-Yoseph
,
P. Z.
, and
Solan
,
A.
,
2003
, “
Multiple States, Stability and Bifurcations of Natural Convection in Rectangular Cavity With Partially Heated Vertical Walls
,”
J. Fluid Mech.
,
492
, pp.
63
89
.
You do not currently have access to this content.