When thermal systems are described by models, it is necessary to know the properties and parameters of the model to ensure accurate results. These properties are usually determined from experiments designed to maximize the precision of the estimated properties. Achieving such high precision requires that all of the other properties be known with certainty. This paper describes a method of design and estimation based upon Fisher’s concept of information that achieves good precision in estimating thermal properties even when the other parameters are known only approximately.

1.
Meriam-Webster Online, (dictionary entry), http://www.webster.com
2.
Emery
,
A. F.
, and
Nenarokomov
,
A. V.
,
1998
, “
Optimal Experiment Design
,”
Meas. Sci. Technol.
,
9
, pp.
864
876
.
3.
Emery, A. F., Nenarokomov, A. V., and Fadale, T. D., 1999, “Uncertainties in Parameter Estimation: The Optimal Experiment Design,” to be published in Int. J. Heat Mass Transf.
4.
Coleman, H. W., and Steele, W. G., Jr., 1989, Experimentation and Uncertainty Analysis for Engineers, J. Wiley and Sons, New York.
5.
Fisher, R. A., 1990, Statistical Methods, Experimental Design, and Scientific Inference, J. H. Bennett, ed., Oxford University Press, Oxford.
6.
Sorenson H. W., 1980, Parameter Estimation: Principles and Problems, Marcel Dekker, Inc., New York.
7.
Deutsch, R., 1965, Estimation Theory, Prentice-Hall, Englewood Cliffs, NJ.
8.
Papoulis, A., 1991, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York.
9.
Walter, E., and Pronzato, L., 1997, Identification of Parametric Models From Experimental Data, Springer Publishing, NY.
10.
Lin, Y. K., and Cai, G. Q., 1995, Probabilistic Structural Dynamics, Advanced Theory and Applications, McGraw-Hill Book Co., New York, NY.
11.
Seber, G. A. F., and Wild, C. J., 1989, NonLinear Regression, J. Wiley and Sons, New York, NY.
12.
Atkinson, A. C., and Donev, A. N., 1989, Optimum Experimental Designs, Oxford University Press, NY.
13.
Emery
,
A. F.
, and
Fadale
,
T. D.
,
1996
, “
Design of Experiments Using Uncertainty Information
,”
ASME J. Heat Transfer
,
118
, pp.
532
538
.
14.
Sivia, D. S., 1996, Data Analysis, A Bayesian Tutorial, Clarendon Press, Oxford.
15.
Vinod, H. D., and Ullah, A., 1981, Recent Advances in Regression Methods, Marcel Dekker, Inc., New York, NY.
16.
Guttman, I., Wilks, S. S., and Hunter, J. S., 1971, Introductory Engineering Statistics, J. Wiley and Sons, New York.
17.
Schlegel
,
L. B.
,
1963
, “
Covariance Matrix Approximations
,”
AIAA J.
,
1
, No.
11
, pp.
2672
2673
.
You do not currently have access to this content.