A detailed analysis of experimental and numerical results for flow and heat transfer in similar offset strip-fin geometries is presented. Surface-average heat transfer and pressure drop, local Nusselt numbers and skin friction coefficients on the fin surface, instantaneous flow structures, and local time-averaged velocity profiles are contrasted for a range of Reynolds numbers using both prior and new experimental and numerical results. This contrast verifies that a two-dimensional unsteady numerical simulation captures the important features of the flow and heat transfer for a range of conditions. However, flow three-dimensionality appears to become important for Reynolds numbers greater than about 1300, and thermal boundary conditions are important for Reynolds numbers below 1000. The results indicate that boundary layer development, flow separation and reattachment, wake formation, and vortex shedding are all important in this complex geometry.

1.
Amon
C. H.
, and
Mikic
B. B.
,
1991
, “
Spectral Element Simulations of Unsteady Forced Convective Heat Transfer: Application to Compact Heat Exchanger Geometries
,”
Numerical Heat Transfer
, Part A, Vol.
19
, pp.
1
19
.
2.
Chen
Y. N.
,
1968
, “
Flow-Induced Vibration and Noise in Tube-Bank Heat Exchangers Due to von Karman Streets
,”
J. of Engineering for Industry
, Vol.
90(b)
, pp.
134
146
.
3.
DeJong
N. C.
, and
Jacobi
A. M.
,
1997
, “
An Experimental Study of Flow and Heat Transfer in Parallel-Plate Arrays: Local, Row-by-Row and Surface Average Behavior
,”
Int. J. Heat Mass Transfer
, Vol.
40
, No.
6
, pp.
1365
1378
.
4.
Ghaddar
N. K.
,
Karniadakis
G. E.
, and
Patera
A. T.
,
1986
, “
A Conservative Isoparametric Spectral Element Method for Forced Convection: Application to Fully Developed Flow in Periodic Geometries
,”
Numerical Heat Transfer
, Vol.
9
, pp.
277
300
.
5.
Goldstein
R. J.
, and
Cho
H. H.
,
1995
, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Thermal Fluid Sci.
, Vol.
10
, pp.
416
434
.
6.
Joshi
H. M.
, and
Webb
R. L.
,
1987
, “
Heat Transfer and Friction in the Offset Strip-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
, Vol.
30
, pp.
69
83
.
7.
Kearney
S. P.
, and
Jacobi
A. M.
,
1996
, “
Local Convective Behavior and Fin Efficiency in Shallow Banks of Inline and Staggered, Annularly Finned Tubes
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, pp.
317
326
.
8.
Kiya
M.
, and
Sasaki
K.
,
1985
, “
Structure of Large-Scale Vortices and Unsteady Reverse Flow in the Reattaching Zone of a Turbulent Separation Bubble
,”
J. Fluid Mechanics
, Vol.
154
, pp.
463
491
.
9.
Kline
S. J.
, and
McClintock
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mechanical Engineering
, Vol.
75
, pp.
3
8
.
10.
Manglik
R. M.
, and
Bergles
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Thermal Fluid Sci.
, Vol.
10
, pp.
171
180
.
11.
Ota
T.
, and
Nishiyama
H.
,
1987
, “
A Correlation of Maximum Turbulent Heat Transfer Coefficient in Reattachment Flow Region
,”
Int. J. Heat Mass Transfer
, Vol.
30
, pp.
1193
1200
.
12.
Patankar
S. V.
, and
Prakash
C.
,
1981
, “
An Analysis of the Effect of Plate Thickness on Laminar Flow and Heat Transfer in Interrupted-Plate Passages
,”
Int. J. Heat Mass Transfer
, Vol.
24
, pp.
51
58
.
13.
Souza Mendes
P. R.
,
1991
, “
The Naphthalene Sublimation Technique
,”
Exp. Thermal Fluid Sci.
, Vol.
4
, pp.
510
523
.
14.
Sparrow
E. M.
, and
Hajiloo
A.
,
1980
, “
Measurements of Heat Transfer and Pressure Drop for an Array of Staggered Plates Aligned Parallel to an Air Flow
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
102
, pp.
426
432
.
15.
Sparrow
E. M.
,
Kang
S. S.
, and
Chuck
W.
,
1987
, “
Relation Between the Points of Flow Reattachment and Maximum Heat Transfer for Regions of Flow Separation
,”
Int. J. Heat Mass Transfer
, Vol.
30
, pp.
1237
1246
.
16.
Sparrow
E. M.
, and
Liu
C. H.
,
1979
, “
Heat Transfer, Pressure Drop and Performance Relationships for In-Line, Staggered, and Continuous Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
, Vol.
22
, pp.
1613
1624
.
17.
Suzuki
K.
,
Hirai
E.
, and
Miyake
T.
,
1985
, “
Numerical and Experimental Studies on a Two-Dimensional Model of an Offset-Strip-Fin Type Compact Heat Exchanger Used at Low Reynolds Number
,”
Int. J. Heat Mass Transfer
, Vol.
28
, No.
4
, pp.
823
836
.
18.
Vogel
J. C.
, and
Eaton
J. K.
,
1985
, “
Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
107
, pp.
922
929
.
19.
Wieting
A. R.
,
1975
, “
Empirical Correlations for Heat Transfer and Flow Friction Characteristics of Rectangular Offset-Fin Plate-Fin Heat Exchangers
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
97
, pp.
488
490
.
20.
Xi, G. N., Futagami, S., Hagiwara, Y., and Suzuki, K., 1991, “Flow and Heat Transfer Characteristics of Offset-Fin Array in the Middle Reynolds Number Range,” ASME/JSME Thermal Engineering Proceedings, Vol. 3, pp. 151–156.
21.
Xi, G. N., Suzuki, K., Hagiwara, Y., and Murata, T., 1990, “Experimental Study on Heat Transfer Characteristics of Offset Fin Arrays—Effect of Fin Thickness in the Low and Middle Ranges of Reynolds Number,” Heat Transfer 1990, Vol. 4, pp. 81–86.
22.
Zhang
L. W.
,
Tafti
D. K.
,
Najjar
F. M.
, and
Balachandar
S.
,
1997
a, “
Computations of Flow and Heat Transfer in Parallel-Plate Fin Heat Exchangers on the CM-5: Effects of Flow Unsteadiness and Three-Dimensionality
,”
Int. J. Heat Mass Transfer
, Vol.
40
, No.
6
, pp.
1325
1341
.
23.
Zhang
L. W.
,
Balachandar
S.
,
Tafti
D. K.
, and
Najjar
F. M.
,
1997
b, “
Heat Transfer Enhancement Mechanisms in Inline and Staggered Parallel-Plate Fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
, Vol.
40
, No.
10
, pp.
2307
2325
.
24.
Zhang
L. W.
,
Balachandar
S.
, and
Tafti
D. K.
,
1997
c, “
Effect of Three-Dimensionality on Predicting Flow and Heat Transfer in Parallel-Plate Fin Heat Exchangers
,”
Num. Heat Transfer
, Part A, Vol.
31
, pp.
327
353
.
This content is only available via PDF.
You do not currently have access to this content.