The present research is an experimental study of pool boiling nucleation behavior using flat, smooth surfaces immersed in saturated highly wetting liquids, FC-72 and FC-87. A flush-mounted, copper surface of 10 mm × 10 mm is used as a heat transfer surface, simulating a microelectronic chip surface. At the nucleation incipient points of higher wall superheats with steady increase of heat flux, vapor film blankets the smooth surface and remains on the surface. To predict this film boiling incipience phenomenon from the smooth surface, an incipience map is developed over the boiling curve. When the incipient heat flux is higher than the minimum heat flux (MHF) and the incipient wall superheat value is higher than the transition boiling curve value at the incipient heat flux, the transition from single-phase natural convection to film boiling is observed at the incipient point. To prevent film boiling incipience, a microporous coating is applied over the smooth surface, which decreases incipient wall superheat and increases minimum heat flux. The film boiling incipience should be avoided to take advantage of highly efficient nucleate boiling heat transfer for the cooling of high-heat-flux applications.

1.
Bar-Cohen
A.
,
1983
, “
Thermal Design of Immersion Cooling Modules for Electronic Components
,”
Heat Transfer Engineering
, Vol.
4
, Nos. 3–4, pp.
35
50
.
2.
Chang
J. Y.
, and
You
S. M.
,
1996
, “
Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, pp.
937
943
.
3.
Chang
J. Y.
, and
You
S. M.
,
1997
a, “
Boiling Heat Transfer Phenomena From Micro-porous and Porous Surfaces in Saturated FC-72
,”
Int. J. Heat Mass Transfer
, Vol.
40
, No.
18
, pp.
4437
4447
.
4.
Chang
J. Y.
, and
You
S. M.
,
1997
b, “
Enhanced Boiling Heat Transfer From Micro-Porous Surfaces; Effects of Coating Composition and Method
,”
International Journal of Heat and Mass Transfer
, Vol.
40
, No.
18
, pp.
4449
4460
.
5.
Jimenez
P. E.
, and
Mudawar
I.
,
1994
, “
A Multi-Kilowatt Immersion-Cooled Standard Electronic Clamshell Module for Future Aircraft Avionics
,”
ASME Journal of Electronic Packaging
, Vol.
116
, pp.
220
229
.
6.
Kutateladze
S. S.
,
Moskvicheva
V. N.
,
Bobrovich
G. I.
,
Mamontova
N. N.
, and
Avksentyuk
B. P.
,
1973
, “
Some Peculiarities on Heat Transfer Crisis in Alkali Metals Boiling Under Free Convection
,”
Int. J. Heat Mass Transfer
, Vol.
16
, pp.
705
713
.
7.
Lienhard
J. H.
, and
Dhir
V. K.
,
1973
, “
Hydrodynamic Prediction of Peak Pool-Boiling Heat Fluxes From Finite Bodies
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
95
, pp.
152
158
.
8.
Mackowski, M. J., 1991, “Requirements for High Flux Cooling of Future Avionics Systems,” SAE Paper No. 912104.
9.
Mudawar
I.
,
Jimenez
P. E.
, and
Morgan
R. E.
,
1994
, “
Immersion-Cooled Standard Electronic Clamshell Module: A Building Block for Future High-Flux Avionic Systems
,”
ASME Journal of Electronic Packaging
, Vol.
116
, pp.
116
125
.
10.
Nelson
R. D.
,
Sommerfeldt
S.
, and
Bar-Cohen
A.
,
1994
, “
Thermal Performance of an Integral Immersion Cooled Multichip Module Package
,”
IEEE Trans. CPMT—Part A
, Vol.
17
, No.
3
, pp.
405
412
.
11.
O’Connor
J. P.
, and
You
S. M.
,
1995
, “
A Painting Technique to Enhance Pool Boiling Heat Transfer in Saturated FC-72
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
117
, pp.
387
393
.
12.
O’Connor
J. P.
,
You
S. M.
, and
Price
D. C.
,
1995
, “
Thermal Management of High Power Microelectronics via Immersion Cooling
,”
IEEE Trans. CPMT, Part A
, Vol.
18
, No.
3
, pp.
656
663
.
13.
Okuyama
K.
, and
Iida
Y.
,
1990
, “
Transient Boiling Heat Transfer Characteristics of Nitrogen (Bubble Behavior and Heat Transfer Rate at Stepwise Heat Generation)
,”
Int. J. Heat Mass Transfer
, Vol.
33
, No.
10
, pp.
2065
2071
.
14.
Sakurai
A.
,
Shiotsu
M.
, and
Hata
M.
,
1990
, “
Effects of System Pressure on Minimum Film Boiling Temperature for Various Liquids
,”
Exp. Thermal and Fluid Science
, Vol.
3
, No.
5
, pp.
450
457
.
15.
Sakurai
A.
,
Shiotsu
M.
, and
Hata
M.
,
1992
, “
Boiling Heat Transfer Characteristics for Heat Inputs With Various Increasing Rates in Liquid Nitrogen
,”
Cryogenics
, Vol.
32
, No.
5
, pp.
421
429
.
16.
Sinha
D. N.
,
Brodie
L. C.
,
Semura
J. S.
, and
Young
F. M.
,
1979
, “
Premature Transition to Stable Film Boiling Initiated by Power Transients in Liquid Nitrogen
,”
Cryogenics
, Vol.
19
, pp.
225
229
.
17.
Skripov
V. P.
,
Pavlov
P. A.
, and
Sinitsyn
E. N.
,
1965
, “
Heating of Liquids to Boiling by a Pulsating Heat Supply
,”
High Temperature
, Vol.
3
, pp.
670
674
.
18.
Skripov
V. P.
, and
Pavlov
P. A.
,
1970
, “
Explosive Boiling of Liquids and Fluctuation Nucleus Formation
,”
High Temperature
, Vol.
8
, pp.
782
787
.
19.
Straub
J.
,
1994
, “
The Role of Surface Tension for Two-Phase Heat and Mass Transfer in the Absence of Gravity
,”
Exp. Thermal and Fluid Science
, Vol.
9
, pp.
253
273
.
20.
Stralen, S. V., and Cole, R., 1979, Boiling Phenomena, Vol. 1, Hemisphere Publ. Co., pp. 83–86.
21.
Zuber, N., 1959, “Hydrodynamic Aspects of Boiling Heat Transfer,” AEC Report No. AECU-4439, Physics and Mathematics.
This content is only available via PDF.
You do not currently have access to this content.