The reduction of semiconductor device size to the submicrometer range leads to unique electrical and thermal phenomena. The presence of high electric fields (order of 107 V/m) energizes the electrons and throws them far from equilibrium with the lattice. This makes heat generation a nonequilibrium process. For gallium arsenide (GaAs), energy is first transferred from the energized electrons to optical phonons due to strong polar coupling. Since optical phonons do not conduct heat, they must transfer their energy to acoustic phonons for lattice heat conduction. Based on the two-step mechanism with corresponding time scales, a new model is developed to study the process of nonequilibrium heat generation and transport in a GaAs metal semiconductor field effect transistor (MESFET) with a gate length of 0.2 μm. When 3 V is applied to the device, the electron temperature rise is predicted to be more than 1000 K. The effect of lattice heating on electrical characteristics of the device shows that the current is reduced due to decrease in electron mobility. The package thermal conductance is observed to have strong effects on the transient response of the device.

1.
Bhandari, C. N., and Rowe, D. M., 1988, Thermal Conduction in Semiconductors, Wiley, New York.
2.
Blakemore
J. S.
,
1982
, “
Semiconductor and Other Major Properties of Gallium Arsenide
,”
J. Appl. Phys.
, Vol.
53
, pp.
R123–R181
R123–R181
.
3.
Blotekjaer
K.
,
1970
, “
Transport Equations for Electrons in Two-Valley Semiconductors
,”
IEEE Trans. Electron Devices
, Vol.
ED-17
, pp.
38
47
.
4.
Carrillo
J. L.
, and
Rodriguez
M. A.
,
1991
, “
Model for Hot-Electron Phenomena: Theory and General Results
,”
Phys. Rev. B
, Vol.
44
, pp.
2934
2945
.
5.
Collins
C. L.
, and
Yu
P. Y.
,
1984
, “
Generation of Nonequilibrium Optical Phonons in GaAs and Their Application in Studying Intervalley Electron-Phonon Scattering
,”
Phys. Rev. B
, Vol.
30
, pp.
4501
4515
.
6.
Cook
R. T.
, and
Frey
J.
,
1982
, “
Two-Dimensional Numerical Simulation of Energy Transport Effects in Si and GaAs MESFETs
,”
IEEE Trans. Electron Devices
, Vol.
ED-29
, pp.
970
977
.
7.
Curtice
W. R.
, and
Yun
Y.-H.
,
1981
, “
A Temperature Model for the GaAs MESFET
,”
IEEE Trans. Electron Devices
, Vol.
ED-28
, pp.
954
962
.
8.
Ferry, D. K., 1991, Semiconductors, Macmillan, New York.
9.
Fushinobu
K.
, and
Majumdar
A.
,
1992
, “
Thermal and Electrical Modeling of Sub-micron MESFETs
,”
Thermal Science and Engineering
, Vol.
1
, pp.
1
10
.
10.
INSPEC, 1986, Properties of Gallium Arsenide, EMIS Data Reviews Series No. 2, New York.
11.
Joshi
R. P.
, and
Ferry
D. K.
,
1989
, “
Hot-Phonon Effects and Interband Relaxation Process in Photoexcited GaAs Quantum Wells
,”
Phys. Rev. B
, Vol.
39
, pp.
1180
1187
.
12.
Kittel, C., 1986, Introduction to Solid State Physics, 6th ed., Wiley, New York.
13.
Kramer
B.
, and
Mircea
A.
,
1975
, “
Determination of Saturated Electron Velocity in GaAs
,”
Appl. Phys. Lett.
, Vol.
26
, pp.
623
625
.
14.
Lai
J.
,
Carrejo
J. P.
, and
Majumdar
A.
,
1993
, “
Thermal Imaging and Analysis at Sub-micrometer Scales Using the Atomic Force Microscope
,”
Heat Transfer on the Microscale
, ASME HTD-Vol.
253
, pp.
13
20
.
15.
Landolt, H., 1982, Numerical Data and Functional Relationships in Science and Technology, Vol. III/17a, Springer-Verlag, New York.
16.
Lin
W.
,
Schoenlein
R. W.
,
Fujimoto
J. G.
, and
Ippen
E. P.
,
1988
, “
Femtosecond Absorption Saturation Studies of Hot Carriers in GaAs and AIGaAs
,”
IEEE J. Quantum Electronics
, Vol.
24
, pp.
267
275
.
17.
Lugli
P.
,
Bordone
P.
,
Reggiani
L.
,
Rieger
M.
,
Kocevar
P.
, and
Goodnick
S. M.
,
1989
, “
Monte Carlo Studies of Nonequilibrium Phonon Effects in Polar Semiconductors and Quantum Wells. I. Laser Photoexcitation
,”
Phys. Rev. Lett.
, Vol.
39
, pp.
7852
7865
.
18.
Majumdar
A.
,
Carrejo
J. P.
, and
Lai
J.
,
1992
, “
Thermal Imaging Using the Atomic Force Microscope
,”
Appl. Phys. Lett.
, Vol.
62
, pp.
2501
2503
.
19.
Peterson
C. L.
, and
Lyon
S. A.
,
1990
, “
Observation of Hot-Electron Energy Loss Through the Emission of Phonon-Plasmon Coupled Modes in GaAs
,”
Phys. Rev. Lett.
, Vol.
65
, pp.
760
763
.
20.
Pierret, R. F., 1989, Advanced Semiconductor Fundamentals, Modular Series on Solid State Devices, Vol. VI, Addison-Wesley, Boston, MA.
21.
Shah, J., 1992, Hot Carriers in Semiconductor Nanostructures: Physics and Applications, Academic Press, New York.
22.
Snowden, C. M., 1988, Semiconductor Device Modeling, Peregrinus, London.
23.
Sze, S. M., 1981, Physics of Semiconductor Devices, 2nd ed., Wiley, New York.
24.
Wang
C. T.
,
1985
, “
A New Set of Semiconductor Equations for Computer Simulation of Submicron Devices
,”
Solid-State Electronics
, Vol.
28
, pp.
783
788
.
25.
Watanabe, T., Natori, M., and Oguni, T., 1989, Fortran 77 ni yoru suuchi keisan software [in Japanese], Maruzen Co., Ltd., Tokyo.
26.
Wolfe, C. M., Holonyak, N., Jr., and Stillman, G. E., 1989, Physical Properties of Semiconductors, Prentice Hall, New Jersey.
27.
Yoganathan
S.
, and
Banerjee
S. K.
,
1992
, “
A New Decoupled Algorithm for Nonstationary, Transient Simulations of GaAs MESFET’s
,”
IEEE Trans. Electron Devices
, Vol.
39
, pp.
1578
1587
.
28.
Zhou
J.-R.
, and
Ferry
D. K.
,
1992
, “
Simulation of Ultra-Small GaAs MESFET Using Quantum Moment Equations
,”
IEEE Trans. Electron Devices
, Vol.
39
, pp.
473
478
.
This content is only available via PDF.
You do not currently have access to this content.