Abstract

Supercritical CO2 (sCO2) power cycles represent a promising technology for driving the energy transition. In fact, various research projects around the world are currently studying the possible applications of this technology, which is characterized by high efficiency, competitive costs, compact machinery, and enhanced flexibility with respect to competing systems, such as steam-based power cycles. Within this context, the European Union (EU)-funded SOLARSCO2OL project aims to build a MW-scale sCO2 pilot facility coupled with a concentrated solar power (CSP) plant. A transient model of the demonstration plant was previously developed in the transeo simulation tool by the Thermochemical Power Group (TPG) of University of Genoa to study the operational envelope of the cycle. In the present work, the model is upgraded to take into account all the relevant fluid-dynamic and thermodynamic phenomena affecting the transient behavior of the plant. In particular, a detailed crossflow sCO2–air cooler model is now included, which is crucial for assessing the compressor inlet temperature (CIT) behavior and controllability. The system has to comply with several constraints, such as compressor surge margin, turbomachinery inlet temperatures, and compressor inlet pressure (CIP). The desired net power output should also be guaranteed. The dynamic responses of the system to step variations in various input variables were recorded and used to design and tune the main operational controls. The input variables considered include: (1) compressor rotational speed, (2) anti-surge valve (ASV) fractional opening, (3) mass flowrate of air through the cooler, (4) mass flowrate of the molten salts through the heater, and (5) CO2 inventory for injection and extraction of working fluid. The implemented control structure includes proportional–integral–derivative (PID) controllers, feedforward action, and their combinations. The controllers are tuned using a mix of established methods, such as Cohen–Coon response-based PID tuning and adjustments from feedforward controls. The feedforward controls were designed taking into account the steady-state values from off-design simulations, as well as the interactions between each controller and the other controlled variables. The final control setup is tested on various power ramps to assess the capability of the prototype cycle in load following and disturbance rejection, showing very good performance in set-point tracking.

References

1.
Manabe
,
S.
,
2019
, “
Role of Greenhouse Gas in Climate Change
,”
Tellus A: Dyn. Meteorol. Oceanogr.
,
71
(
1
), p.
1620078
.10.1080/16000870.2019.1620078
2.
White
,
M. T.
,
Bianchi
,
G.
,
Chai
,
L.
,
Tassou
,
S. A.
, and
Sayma
,
A. I.
,
2021
, “
Review of Supercritical CO2 Technologies and Systems for Power Generation
,”
Appl. Therm. Eng.
,
185
, p.
116447
.10.1016/j.applthermaleng.2020.116447
3.
Baik
,
Y. J.
,
Kim
,
M.
,
Chang
,
K. C.
, and
Kim
,
S. J.
,
2011
, “
Power-Based Performance Comparison Between Carbon Dioxide and R125 Transcritical Cycles for a Low-Grade Heat Source
,”
Appl. Energy
,
88
(
3
), pp.
892
898
.10.1016/j.apenergy.2010.08.029
4.
Liu
,
Y.
,
Wang
,
Y.
, and
Huang
,
D.
,
2019
, “
Supercritical CO2 Brayton Cycle: A State-of-the-Art Review
,”
Energy
,
189
, p.
115900
.10.1016/j.energy.2019.115900
5.
Wright
,
S. A.
,
Davidson
,
C. S.
, and
Scammell
,
W. O.
,
2016
, “
Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems
,”
Fifth International sCO2 Symposium
, San Antonio, TX, Mar. 28–31, pp.
28
31
.https://sco2symposium.com/papers2016/SystemModeling/059paper.pdf
6.
Li
,
M. J.
,
Jie
,
Y. J.
,
Zhu
,
H. H.
,
Qi
,
G. J.
, and
Li
,
M. J.
,
2018
, “
The Thermodynamic and Cost-Benefit-Analysis of Miniaturized Lead-Cooled Fast Reactor With Supercritical CO2 Power Cycle in the Commercial Market
,”
Prog. Nucl. Energy
,
103
, pp.
135
150
.10.1016/j.pnucene.2017.11.015
7.
Le Moullec
,
Y.
,
2013
, “
Conceptual Study of a High Efficiency Coal-Fired Power Plant With CO2 Capture Using a Supercritical CO2 Brayton Cycle
,”
Energy
,
49
(
1
), pp.
32
46
.10.1016/j.energy.2012.10.022
8.
Yin
,
J. M.
,
Zheng
,
Q. Y.
,
Peng
,
Z. R.
, and
Zhang
,
X. R.
,
2020
, “
Review of Supercritical CO2 Power Cycles Integrated With CSP
,”
Int. J. Energy Res.
,
44
(
3
), pp.
1337
1369
.10.1002/er.4909
9.
Glos
,
S.
,
Hansper
,
J.
,
Grotkamp
,
S.
, and
Wechsung
,
M.
,
2019
, “
Assessment of Performance and Costs of CO2 Based Next Level Geothermal Power (NLGP) Systems
,”
3rd European Conference on Supercritical CO2 Power System 2019
, Paris, France, Sept. 19–20, pp.
49
58
.https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00070549/Glos_et_al_Assessment_performance_and_costs.pdf
10.
Alfani
,
D.
,
Astolfi
,
M.
,
Binotti
,
M.
,
Silva
,
P.
, and
Macchi
,
E.
,
2020
, “
Off-Design Performance of CSP Plant Based on Supercritical CO2 Cycles
,”
AIP Conf. Proc.
,
2303
(
1
), p.
130001
.10.1063/5.0029801
11.
Crespi
,
F.
,
Sánchez
,
D.
,
Rodríguez
,
J. M.
, and
Gavagnin
,
G.
,
2020
, “
A Thermo-Economic Methodology to Select sCO2 Power Cycles for CSP Applications
,”
Renewable Energy
,
147
, pp.
2905
2912
.10.1016/j.renene.2018.08.023
12.
Omar
,
A.
,
Saldivia
,
D.
,
Li
,
Q.
,
Barraza
,
R.
, and
Taylor
,
R. A.
,
2021
, “
Techno-Economic Optimization of Coupling a Cascaded MED System to a CSP-sCO2 Power Plant
,”
Energy Convers. Manage.
,
247
, p.
114725
.10.1016/j.enconman.2021.114725
13.
Van Der Westhuizen
,
R.
, and
Dobson
,
R. T.
,
2019
, “
Modelling and Simulation of a Supercritical Carbon Dioxide (sCO2) Concentrated Solar Power (CSP) System
,”
AIP Conf. Proc.
,
2126
(
1
), p.
140008
.10.1063/1.5117656
14.
Lambruschini
,
F.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Traverso
,
A.
,
2016
, “
Dynamic Model of a 10 MW Supercritical CO2 Recompression Brayton Cycle
,”
ASME
Paper No. GT2016-56459.10.1115/GT2016-56459
15.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2014
, “
Recent Developments in S-CO2 Cycle Dynamic Modeling and Analysis at ANL
,”
The 4th International Symposium-Supercritical CO2 Power Cycles
,
Pittsburgh, PA
, Sept. 9–10, pp.
1
21
.https://sco2symposium.com/papers2014/systemModelingControl/45PPT-Moisseytsev.pdf
16.
SOLARSCO2OL
,
2023
, “
SOLARSCO2OL Project – SOLAR Based sCO2 Operating Low-Cost Plants
,” RINA Consulting S.P.A., Genova, Italy, accessed Dec. 14, 2023, https://www.solarsco2ol.eu/
17.
Gini
,
L.
,
Maccarini
,
S.
,
Traverso
,
A.
,
Barberis
,
S.
,
Guedez
,
R.
,
Pesatori
,
E.
, and
Bisio
,
V.
,
2023
, “
A Prototype Recuperated Supercritical Co2 Cycle: Part-Load and Dynamic Assessment
,”
Appl. Therm. Eng.
,
225
, p.
120152
.10.1016/j.applthermaleng.2023.120152
18.
Gini
,
L.
,
Maccarini
,
S.
,
Traverso
,
A.
,
Pesatori
,
E.
,
Milani
,
A.
,
Bisio
,
V.
,
Valente
,
R.
,
Barberis
,
S.
, and
Guedez
,
R.
,
2022
, “
Part-Load Behaviour and Control Philosophy of a Recuperated Supercritical CO2 Cycle
,”
ASME
Paper No. GT2022-83021.10.1115/GT2022-83021
19.
Maccarini
,
S.
,
Tucker
,
S.
,
Mantelli
,
L.
,
Barberis
,
S.
, and
Traverso
,
A.
,
2023
, “
Dynamics and Control Implementation of a Supercritical CO2 Simple Recuperated Cycle
,”
E3S Web Conf.
,
414
, p.
02012
.10.1051/e3sconf/202341402012
20.
Traverso
,
A.
,
2005
, “
TRANSEO Code for the Dynamic Performance Simulation of Micro Gas Turbine Cycles
,”
ASME
Paper No. GT2005-68101.10.1115/GT2005-68101
21.
Guedez
,
R.
,
Guccione
,
S.
,
Trevisan
,
S.
,
Horta
,
P.
,
Stengler
,
J.
,
Martins
,
P.
,
Meyer-Grünefeldt
,
M.
,
Lopez-Roman
,
A.
,
Barberis
,
S.
, and
Xhani
,
I.
,
2022
, “
Demonstration of the SOLARSCO2OL sCO2 Power Cycle for Future Hybrid CSP-PV Plants at the Évora Molten Salt Platform
,”
28th International Conference on Concentrating Solar Power and Chemical Systems, SolarPACES
, Albuquerque, NM, Sept. 27–30, pp.
1
2
.https://elib.dlr.de/192912/1/SP22_Abstract_SolarSCO2OL_EMSP.pdf
22.
Guédez
,
R.
,
Barberis
,
S.
,
MacCarini
,
S.
,
López-Román
,
A.
,
Milani
,
A.
,
Pesatori
,
E.
,
Oyarzábal
,
U.
, and
Sánchez
,
A.
,
2022
, “
Design of a 2 MW Molten Salt Driven Supercritical CO2 Cycle and Turbomachinery for the SOLARSCO2OL Demonstration Project
,”
ASME
Paper No. GT2022-82013.10.1115/GT2022-82013
23.
Traverso
,
A.
,
Massardo
,
A. F.
, and
Scarpellini
,
R.
,
2006
, “
Externally Fired Micro-Gas Turbine: Modelling and Experimental Performance
,”
Appl. Therm. Eng.
,
26
(
16
), pp.
1935
1941
.10.1016/j.applthermaleng.2006.01.013
24.
White
,
C. W.
,
Pidaparti
,
S.
,
O'Connell
,
A. C.
, and
Weiland
,
N.
,
2019
, “
Cooling Technology Models for Indirect sCO2 Cycles
,”
National Energy Technology Laboratory (NETL)
,
Pittsburgh, PA, Morgantown, WV, Albany, OR
, Report No.
NETL-PUB-22604
.https://www.osti.gov/biblio/1608939
25.
Vojacekl
,
A.
,
Melichar
,
T.
,
Dostal
,
V.
,
Goettelt
,
F.
, and
Rohde
,
M.
,
2019
, “
Performance Test of the Air-Cooled Finned-Tube Supercritical CO2 Sink Heat Exchanger
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031014
.10.1115/1.4041686
26.
Deshmukh
,
A.
,
Kapat
,
J.
, and
Khadse
,
A.
,
2021
, “
Transient Thermodynamic Modeling of Air Cooler in Supercritical CO2 Brayton Cycle for Solar Molten Salt Application
,”
ASME J. Energy Resour. Technol. Trans. ASME
,
143
(
2
), p.
022103
.10.1115/1.4047758
27.
Wang
,
C. C.
,
Chi
,
K. Y.
, and
Chang
,
C. J.
,
2000
, “
Heat Transfer and Friction Characteristics of Plain Fin-and-Tube Heat Exchangers, Part II: Correlation
,”
Int. J. Heat Mass Transfer
,
43
(
15
), pp.
2693
2700
.10.1016/S0017-9310(99)00333-6
28.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, Krieger Publishing Company, Malabar, FL.
29.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
,
Zilio
,
C.
, and
Censi
,
G.
,
2006
, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
(
8
), pp.
31
38
.10.1080/01457630600793970
30.
Gnielinski
,
V.
,
1975
, “
New Equations for Heat and Mass Transfer in the Turbulent Flow in Pipes and Channels
,”
STIA
,
41
(
1
), pp.
8
16
.https://ui.adsabs.harvard.edu/abs/1975STIA...7522028G/abstract
31.
Casella
,
F.
,
Mangola
,
G.
, and
Alfani
,
D.
,
2020
, “
Density-Based Control of Air Coolers in Supercritical CO2 Power Cycles
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
12554
12559
.10.1016/j.ifacol.2020.12.1810
You do not currently have access to this content.