Abstract

High power density, low fuel consumption, and a compact design with competitive total costs of ownership are key requirements for internal combustion engines for conventional fuels and carbon-free or carbon-neutral future fuels. These requirements influence the development targets of charging systems and call for single-stage charging systems with increased charge air pressures. However, high compressor pressure ratios of the turbocharger lead to challenging material temperatures in aluminum alloy wheels. Consequently, creep becomes the fundamental lifetime-limiting damage mechanism for these wheels. In order to meet customer requirements regarding total costs of ownership, the lifetime is of major importance for the development of aluminum compressor wheels for turbochargers with pressure ratios beyond 6. This paper focuses on a high-pressure compressor (HPC) design with a water-cooling system for a new turbocharger generation. The development of its components and their validation based on numerically predicted and measured compressor wheel temperatures are discussed. After introducing the need for high-pressure ratios and the accompanying lifetime challenges, the paper presents the design strategy and methods of the development process. Finally, the paper summarizes the achievements obtained by this procedure. Detailed and rarely before documented temperature measurements from the rotating compressor wheel are published. As will be shown, the temperature measurements confirm the predictions from the predevelopment phase. A comparison of the temperature measurements from the recently developed compressor wheel with measurements carried out for a state-of-the-art wheel reveals the technological improvements achieved by this new generation of high-pressure compressor wheels.

References

1.
Weihard
,
S.
,
Kummert
,
K.
,
Benetschik
,
H.
,
Leitenmeier
,
C.
,
Rost
,
S.
,
Spengler
,
S.
, and
Thaser
,
B.
,
2019
, “
Pushing the Limits in Turbocharger Development With Advanced Numerical Simulations
,”
29th CIMAC World Congress 2019
,
Vancouver, QC, Canada
, June 10–14, Paper No. 76, pp.
1
19
.
2.
Albrecht
,
D.
,
Kuhfuss
,
H.
,
Münch
,
S.
, and
Mayr
,
S.
,
2015
, “
Ecocharge – Zweistufige Aufladesysteme bei MAN Diesel & Turbo SE
,”
20. Aufladetechnische Konferenz
,
Dresden
, Sept. 24–25, Paper No. 1, pp.
1
22
.
3.
Albrecht
,
D.
,
Benetschik
,
H.
, and
Schmuttermair
,
H.
,
2013
, “
Die TCX-Baureihe – Eine neue Generation zweistufiger Aufladesysteme
,”
18. Aufladetechnische Konferenz
,
Dresden
, Germany, Sept. 12–13, Paper No. 7, pp.
1
20
.
4.
Lotz
,
R. D.
,
2020
, “
Development and Validation of a High-Pressure Compressor Stage
,”
I
nstitution of Mechanical Engineers: 14th International Conference on Turbochargers and Turbocharging
, Online Conference, May 11–12, pp.
149
162
.https://www.taylorfrancis.com/chapters/oa-edit/10.1201/9781003132172-10/development-validation-high-pressure-compressor-stage-lotz
5.
Münch
,
S.
,
Weihard
,
S.
,
Aurahs
,
L.
, and
Reith
,
C.
,
2023
, “
PBST's New Single-Stage High-Pressure Turbocharger Series
,”
MTZ Worldwide
,
84
(
5
), pp.
56
61
.10.1007/s38313-023-1447-2
6.
Knafl
,
A.
,
Maier
,
J.
,
Holand
,
P.
, and
Stiesch
,
G.
,
2014
, “
Advanced Turbocharging Medium Speed Engines - Requirements From an Engine Manufacturer's Perspective
,”
19. Aufladetechnische Konferenz
, Dresden, Germany, Sept. 25–26, Paper No. 3, pp.
1
18
.
7.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
8.
Sun
,
Z.
,
Tan
,
C.
, and
Zhang
,
D.
,
2009
, “
Flow Field Structures of the Impeller Backside Cavity and Its Influences on the Centrifugal Compressor
,”
ASME
Paper No. GT2009-59879.10.1115/GT2009-59879
9.
Bohn
,
D.
,
Heuer
,
T.
, and
Kusterer
,
K.
,
2005
, “
Conjugate Flow and Heat Transfer Investigation of a Turbo Charger
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
663
669
.10.1115/1.1839919
10.
Stahl
,
M.
,
Franz
,
H.
, and
Ittern
,
L.
,
2019
, “
Conjugate Heat Transfer Study of a Centrifugal Compressor With Impeller Cavities
,”
Proceedings of Global Power and Propulsion Society Technical Conference 2019
,
Zurich, Switzerland
, Jan. 16–17, pp.
1
9
.10.33737/GPPS19-TC-054
11.
Roclawski
,
H.
,
Oberste-Brandenburg
,
C.
, and
Böhle
,
M.
,
2016
, “
Conjugate Heat Transfer Analysis of a Centrifugal Compressor for Turbocharger Applications
,”
16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu
, HI, Apr. 10–15, pp.
1
7
.https://hal.science/hal-01884259/document#:~:text=It%20was%20shown%20that%20the,by%20the%20high%20pressure%20ratio.
12.
Guidotti
,
E.
,
Toni
,
L.
,
Rubino
,
D. T.
,
Tapinassi
,
L.
,
Naldi
,
G.
,
Koyyalamudi
,
V. S.
, and
Prasad
,
S.
,
2014
, “
Influence of Cavity Flows Modeling on Centrifugal Compressor Stages Performance Prediction Across Different Flow Coefficient Impellers
,”
ASME
Paper No. GT2014-25830.10.1115/GT2014-25830
13.
Poullikkas
,
A.
,
1995
, “
Surface Roughness Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
526
528
.10.1115/1.2817294
14.
Poncet
,
S.
,
Chauve
,
M.-P.
, and
Schiestel
,
R.
,
2005
, “
Batchelor Versus Stewartson Flow Structures in a Rotor-Stator Cavity With Throughflow
,”
Phys. Fluids
,
17
(
7
), p.
075110
.10.1063/1.1964791
15.
Gu
,
L.
,
Zemp
,
A.
, and
Abhari
,
R. S.
,
2015
, “
Numerical Study of the Heat Transfer Effect on a Centrifugal Compressor Performance
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
12
), pp.
2207
2220
.10.1177/0954406214557687
16.
Romagnoli
,
A.
,
Manivannan
,
A.
,
Rajoo
,
S.
,
Chiong
,
M. S.
,
Feneley
,
A. J.
,
Pesiridis
,
A.
, and
Martinez-Botas
,
R. F.
,
2017
, “
A Review of Heat Transfer in Turbochargers
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1442
1460
.10.1016/j.rser.2017.04.119
17.
Krewinkel
,
R.
,
Färber
,
J.
,
Orth
,
U.
,
Frank
,
D.
,
Lauer
,
M.
,
Pilgrim
,
C.
,
Gonzalez
,
A. Y.
, et al.,
2017
, “
Validation of Surface Temperature Measurements on a Combustor Liner Under Full-Load Conditions Using a Novel Thermal History Paint
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041508
.10.1115/1.4034724
18.
Karagiannopoulos
,
S.
,
Rode
,
M.
,
Peral
,
D.
,
Castillo
,
D.
,
Araguas-Rodríguez
,
S.
,
Rai
,
K.
,
Inomata
,
R. I.
,
Iosifidis
,
G.
, and
Feist
,
J.
,
2022
, “
Advanced Thermal Profiling of Turbocharger Compressor Wheels Using Phosphorescence Thermal History
Coatings,”
ASME
Paper No. GT2022-80820.10.1115/GT2022-80820
19.
Kaufman
,
J. G.
,
1999
,
Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures
,
ASM International
,
Cleveland, OH
.
20.
Weihard
,
S.
,
Willeke
,
T.
,
Božek
,
L.
,
Hort
,
V.
,
Münch
,
S.
,
Spengler
,
S.
, and
Winter
,
T.
,
2024
, “
Cooling System of a High-Pressure Centrifugal Compressor: Development and Impact on Wheel Temperatures
,”
ASME
Paper No. GT2024-121464.10.1115/GT2024-121464
You do not currently have access to this content.