Abstract

In this work, the dynamics of a liquid film on the surface of NACA 0012 airfoil placed in a high-speed air flow is investigated. The findings complement previous results obtained on time averaged ligament behavior and droplet sizes generated by the same airfoil. Experimental studies were carried out to assess the film thickness, droplet shedding, and the dynamics of the sheet. In the present work, air velocities up to 175 m/s were used with water films flowing between 1.4 and 2.6 cm2/s. The water film was introduced onto one side of the airfoil surface through a series of 0.5 mm holes separated by 1 mm at a location 35 mm downstream of the leading edge of the vane. The results were obtained using four experimental tools. The first is a point measurement of the dynamic film thickness using a confocal laser induced fluorescence method. This spatially resolved measurement provides time resolved measurement of the instantaneous liquid film thickness at specific points on the vane surface. This is complimented by time averaged images of the film thickness on the entire vane surface. Third, high speed videos are obtained to study the accumulation and breakup of the liquid at the trailing edge of vane. Finally, laser diffraction and Phase Doppler interferometry were used to document the spray dynamics downstream of the vane. The results illustrate that the average film thickness decreases with air velocity and increases with the water flowrate. The results are consistent with the previous studies and suggest that the dominant frequency of liquid film wave, ligament breakup length, drop size and spray concentration increase with the air velocity and is modestly affected by water flowrate. Finally, design tools are provided to predict the average film thickness and dominant frequencies of the film thickness, ligament breakup, spray concentration and droplet average size.

References

1.
Lazik
,
W.
,
Doerr
,
T.
,
Bake
,
S.
,
Bank
,
R. V. d
, and
Rackwitz
,
L.
,
2008
, “
Development of Lean-Burn Low-NOx Combustion Technology at Rolls-Royce Deutschland
,”
ASME
Paper No. GT2008-51115.10.1115/GT2008-51115
2.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust Flame
,
159
(
2
), pp.
621
637
.10.1016/j.combustflame.2011.08.004
3.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
2017
,
Atomization and Sprays
,
CRC Press
, Boca Raton, FL.
4.
Meier
,
W.
,
Weigand
,
P.
,
Duan
,
X. R.
, and
Giezendanner-Thoben
,
R.
,
2007
, “
Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in a Lean Premixed Swirl Flame
,”
Combust. Flame
,
150
(
1–2
), pp.
2
26
.10.1016/j.combustflame.2007.04.002
5.
Chandra Ray
,
S.
,
Nishida
,
K.
,
McDonell
,
V.
,
Ogata
,
Y.
, and
Safiullah
,
S.
,
2023
, “
Effects of Full Transient Injection Rate and Initial Spray Trajectory Angles Profiles on the CFD Simulation of Evaporating Diesel Sprays- Comparison Between Single-Hole and Multi Hole Injectors
,”
Energy
,
263
, p.
125796
.10.1016/j.energy.2022.125796
6.
Safiullah
,
S.
,
Ogata
.,
Y.
, and
Nishida
,
K.
,
2021
, “
Evaporation and Mixture Formation Characteristics of Diesel Spray Under Various Nozzle Hole Size and Injection Pressure Condition Employing Similar Injection Rate Profile
,”
Int. Commun. Heat Mass Transfer
,
123
, p.
105184
.10.1016/j.icheatmasstransfer.2021.105184
7.
Van Eckeveld
,
A. C.
,
Gotfredsen
,
E.
,
Westerweel
,
J.
, and
Poelma
,
C.
,
2018
, “
Annular Two-Phase Flow in Vertical Smooth and Corrugated Pipes
,”
Int. J. Multiphase Flow
,
109
, pp.
150
163
.10.1016/j.ijmultiphaseflow.2018.07.004
8.
Schadel
,
S. A.
,
Leman
,
G. W.
,
Binder
,
J. L.
, and
Hanratty
,
T. J.
,
1990
, “
Rates of Atomization and Deposition in Vertical Annular Flow
,”
Int. J. Multiphase Flow
,
16
(
3
), pp.
363
374
.10.1016/0301-9322(90)90069-U
9.
Abdulkadir
,
M.
,
Samson
,
J. N.
,
Zhao
,
D.
,
Okhiria
,
D. U.
, and
Hernandez-Perez
,
V.
,
2018
, “
Annular Liquid Film Thickness Prediction in a Vertical 180° Return Bend
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
205
215
.10.1016/j.expthermflusci.2018.03.006
10.
Kirols
,
H. S.
,
Mahdipoor
,
M. S.
,
Kevorkov
,
D.
,
Uihlein
,
A.
, and
Medraj
,
M.
,
2016
, “
Energy Based Approach for Understanding Water Droplet Erosion
,”
Mater. Des.
,
104
, pp.
76
86
.10.1016/j.matdes.2016.04.089
11.
Hesketh
,
J. A.
, and
Walker
,
P. J.
,
2005
, “
Effects of Wetness in Steam Turbines
,”
Proc. Inst. Mech. Eng. C
,
219
(
12
), pp.
1301
1314
.10.1243/095440605X32110
12.
Sattelmayer
,
T.
, and
Wittig
,
S.
,
1986
, “
Internal Flow Effects in Prefilming Airblast Atomizers: Mechanisms of Atomization and Droplet Spectra
,”
ASME J. Eng. Gas. Turbine Power.
, 108(3), pp.
465
472
.10.1115/1.3239931
13.
El-Shanawany
,
M. S.
, and
Lefebvre
,
A. H.
,
1980
, “
Airblast Atomization: The Effect of Linear Scale on Mean Drop Size
,”
ASME
Paper No. 80-GT-7410.1115/80-GT-74.
14.
Gepperth
,
S.
,
Müller
,
A.
,
Koch
,
R.
, and
Bauer
,
H. J.
,
2012
, “
Ligament and Droplet Characteristics in Prefilming Airblast Atomization
,” ICLASS, 12th Triennial International Annual Conference on Liquid Atomization and Spray Systems (
ICLASS
), Heidelberg, Germany, Sept. 2–6, pp.
1
8
.https://www.ilasseurope.org/ICLASS/iclass2012_Heidelberg/Contributions/Paper-pdfs/Contribution1111_b.pdf
15.
Inamura
,
T.
,
Shirota
,
M.
,
Tsushima
,
M.
,
Kato
,
M.
,
Hamajima
,
S.
, and
Sato
,
A.
,
2012
, “
Spray Characteristics of Prefilming Type of Airblast Atomizer
,” ICLASS, 12th Triennial International Annual Conference on Liquid Atomization and Spray Systems (
ICLASS
), Heidelberg, Germany, Sept. 2–6, pp.
1
8
.https://www.ilasseurope.org/ICLASS/iclass2012_Heidelberg/Contributions/Paper-pdfs/Contribution1259_b.pdf
16.
Esquivias
,
B.
,
Hickey
,
B.
,
McDonell
,
V.
,
Tabata
,
S.
, and
Senoo
,
S.
,
2022
, “
Investigation of Water Films Shed From an Airfoil in a High-Speed Flow
,”
ASME J. Eng. Gas Turbine Power
,
144
(
12
), p.
121002
.10.1115/1.4055453
17.
Kamada
,
Y.
,
Inoue
,
T.
,
Wang
,
Z.
,
Inoue
,
C.
, and
Senoo
,
S.
,
2023
, “
Annular Liquid-Film Fragmentation Process Sheared by Developed Turbulent Gas Flow
,”
ASME
Paper No. GT2023-101666.10.1115/GT2023-101666
18.
Boukra
,
M.
,
Cartellier
,
A.
,
Ducasse
,
É.
,
Gajan
,
P.
,
Lalo
,
M.
,
Noel
,
T.
, and
Strzelecki
,
A.
,
2009
, “
Use of Faraday Instabilities to Enhance Fuel Pulverisation in Air-Blast Atomisers
,”
C. Rendus Mécanique
,
337
(
6–7
), pp.
492
503
.10.1016/j.crme.2009.06.027
19.
Inoue
,
T.
,
Inoue
,
C.
,
Fujii
,
G.
, and
Daimon
,
Y.
,
2022
, “
Evaporation of Three-Dimensional Wavy Liquid Film Entrained by Turbulent Gas Flow
,”
AIAA J.
,
60
(
6
), pp.
3805
3812
.10.2514/1.J061381
20.
Himmelsbach
,
J.
,
Noll
,
B.
, and
Wittig
,
S.
,
1994
, “
Experimental and Numerical Studies of Evaporating Wavy Fuel Films in Turbulent Air Flow
,”
Int. J. Heat Mass Transf.
,
37
(
8
), pp.
1217
1226
.10.1016/0017-9310(94)90207-0
21.
Lefebvre
,
A. H.
,
1980
, “
Airblast Atomization
,”
Prog Energy Combust. Sci.
,
6
(
3
), pp.
233
261
.10.1016/0360-1285(80)90017-9
22.
Gepperth
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2013
, “
Analysis and Comparison of Primary Droplet Characteristics in the Near Field of a Prefilming Airblast Atomizer
,”
ASME
Paper No. GT2013-94033.10.1115/GT2013-94033
23.
Gepperth
,
S.
,
Guildenbecher
,
D.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2010
, “
Pre-Filming Primary Atomization: Experiments and Modeling
,” 23rd European Conference on Liquid Atomization and Spray Systems (
ILASS-Europe 2010
), Brno, Czech Republic, Sept. 6–9, pp.
1
9
.https://www.ilasseurope.org/ICLASS/ilass2010/FILES/FULL_PAPERS/025.pdf
24.
Rizk
,
N. K.
, and
Lefebvre
,
A. H.
,
1980
, “
The Influence of Liquid Film Thickness on Airblast Atomization
,”
ASME J. Eng. Power.
, 102(3) pp.
706
710
.10.1115/1.3230329
25.
Chaussonnet
,
G.
,
Gepperth
,
S.
,
Holz
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2020
, “
Influence of the Ambient Pressure on the Liquid Accumulation and on the Primary Spray in Prefilming Airblast Atomization
,”
Int. J. Multiphase Flow
,
125
, p.
103229
.10.1016/j.ijmultiphaseflow.2020.103229
26.
Okabe
,
T.
,
Katagata
,
N.
,
Sakaki
,
T.
,
Shirota
,
M.
,
Fumoto
,
K.
, and
Inamura
,
T.
,
2019
, “
Time-Dependent Breakup Length of Liquid Sheet in Prefilming Type of Airblast Atomizer
,”
Atomization Sprays
,
29
(
4
), pp.
289
303
.10.1615/AtomizSpr.2019030263
27.
Inamura
,
T.
,
Katagata
,
N.
,
Nishikawa
,
H.
,
Okabe
,
T.
, and
Fumoto
,
K.
,
2019
, “
Effects of Prefilmer Edge Thickness on Spray Characteristics in Prefilming Airblast Atomization
,”
Int. J. Multiphase Flow
,
121
, p.
103117
.10.1016/j.ijmultiphaseflow.2019.103117
28.
Safiullah
,
S.
,
Hickey
,
B.
,
McDonell
,
V.
,
Tabata
,
S.
, and
Senoo
,
S.
,
2024
, “
Investigation of Liquid Film Behavior on the Surface of an Airfoil in a High-Speed Flow and Subsequent Atomization From the Trailing Edge-Effect of Airfoil Shape
,”
ASME
Paper No. POWER2024-137651.10.1115/POWER2024-137651
29.
Safiullah
,
S.
,
McDonell
,
V.
,
Tabata
,
S.
, and
Senoo
,
S.
,
2024
, “
Effect of Liquid Properties on Film Behavior on the Surface of an Airfoil in a High-Speed Flow and Subsequent Atomization From the Trailing Edge
,”
Int. J. Multiphase Flow
,
180
, p.
104926
.10.1016/j.ijmultiphaseflow.2024.104926
30.
Hung
,
D.
,
Harrington
,
D.
,
Gandhi
,
A.
,
Markle
,
L.
,
Parrish
,
S.
,
Shakal
,
J.
,
Sayar
,
H.
,
Cummings
,
S.
, and
Kramer
,
J.
,
2008
, “
Gasoline Fuel Injector Spray Measurement and Characterization–A New SAE J2715 Recommended Practice
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
534
548
.10.4271/2008-01-1068
31.
Otsu
,
N.
,
1975
, “
A Threshold Selection Method From Gray-Level Histograms
,”
Automatica
,
11
(
285–296
), pp.
23
27
.
32.
Huang
,
C.
,
Li
,
X.
, and
Wen
,
Y.
,
2021
, “
An OTSU Image Segmentation Based on Fruitfly Optimization Algorithm
,”
Alexandria Eng. J.
,
60
(
1
), pp.
183
188
.10.1016/j.aej.2020.06.054
33.
Bachalo
,
W. D.
, and
Houser
,
M. J.
,
1984
, “
Phase/Doppler Spray Analyzer for Simultaneous Measurements of Drop Size and Velocity Distributions
,”
Opt. Eng.
,
23
(
5
), p. 235583.10.1117/12.7973341
34.
Tibiriçá
,
C. B.
,
do Nascimento
,
F. J.
, and
Ribatski
,
G.
,
2010
, “
Film Thickness Measurement Techniques Applied to Micro-Scale Two-Phase Flow Systems
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
463
473
.10.1016/j.expthermflusci.2009.03.009
35.
Driscoll
,
D. I.
,
Schmitt
,
R. L.
, and
Stevenson
,
W. H.
,
1992
, “
Thin Flowing Liquid Film Thickness Measurement by Laser Induced Fluorescence
,”
ASME J. Fluids Eng.
, 114(1) pp.
107
112
.10.1115/1.2909984
36.
Schmitt
,
R. L.
,
Stevenson
,
W. H.
, and
Simmons
,
H. C.
,
1982
, “
Optical Measurement of Liquid Film Thickness
,”
Proceedings of First International Congress on Application of Lasers and Electro-Optics
, Laser Institute of America, Sept. 20–23, Boston, MA, pp.
31
35
.
37.
Myers
,
T. G.
, and
Thompson
,
C. P.
,
1998
, “
Modeling the Flow of Water on Aircraft in Icing Conditions
,”
AIAA J.
,
36
(
6
), pp.
1010
1013
.10.2514/2.472
38.
Myers
,
T. G.
,
Charpin
,
J. P. F.
, and
Thompson
,
C. P.
,
2002
, “
Slowly Accreting Ice Due to Supercooled Water Impacting on a Cold Surface
,”
Phys. Fluids
,
14
(
1
), pp.
240
256
.10.1063/1.1416186
39.
Leng
,
M.
,
Chang
,
S.
, and
Wu
,
H.
,
2018
, “
Experimental Investigation of Shear-Driven Water Film Flows on Horizontal Metal Plate
,”
Exp. Therm. Fluid Sci.
,
94
, pp.
134
147
.10.1016/j.expthermflusci.2018.02.004
40.
Batarseh
,
F. Z.
,
Gnirß
,
M.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2009
, “
Fluctuations of a Spray Generated by an Airblast Atomizer
,”
Exp. Fluids
,
46
(
6
), pp.
1081
1091
.10.1007/s00348-009-0612-y
41.
Zhang
,
P.
,
Di
,
D.
,
Jin
,
Y.
,
Li
,
J.
,
Yan
,
Y.
, and
Tang
,
H.
,
2023
, “
Experimental Investigations on Dynamic Wave Structures of a Prefilming Atomizer
,”
Phys. Fluids
,
35
(
6
), p. 065105.
You do not currently have access to this content.