Abstract

In recent years, attention has been paid to hydrogen thanks to its carbon-free nature and its interesting characteristics as an energy vector. Despite the large number of numerical analyses regarding hydrocarbon combustion in all the steady and unsteady processes, few papers that cover all those aspects are available in the literature for hydrogen flames. Therefore, a numerical methodology to explore the complete ignition sequence from the spark release to the flame stabilization is validated on a single-sector hydrogen burner. In this context, a preliminary direct numerical simulation (DNS) investigation of laminar spherical expanding flames is performed using different diffusive transport models to isolate their impact. The present work, carried out within the European project HESTIA, investigates the atmospheric test rig installed at the Norwegian University of Science and Technology operating with a lean, perfectly premixed, hydrogen–air flame stabilized on a conical bluff body. Four simulations are performed adopting the thickened flame model with an energy deposition (ED) strategy to assess the impact of preferential and thermal diffusion, as well as grid resolution, on flame dynamics. Three-dimensional (3D) flame structure visualization coupled with detailed particle image velocimetry (PIV)/OH-planar laser induced fluorescence (OH-PLIF) measurements allows the investigation of the key mechanisms involved during the ignition. The dynamic response of the flame through axial fluctuations once the ignition transient is concluded is reconstructed by the numerical strategy employed. Although the overall behavior is almost unchanged by including or not thermal diffusion effects, their local impact on the flame is evident leading to a better agreement with experimental data.

References

1.
Öberg
,
S.
,
Odenberger
,
M.
, and
Johnsson
,
F.
,
2022
, “
Exploring the Competitiveness of Hydrogen-Fueled Gas Turbines in Future Energy Systems
,”
Int. J. Hydrogen Energy
,
47
(
1
), pp.
624
644
.10.1016/j.ijhydene.2021.10.035
2.
Haglind
,
F.
,
Hasselrot
,
A.
, and
Singh
,
R.
,
2006
, “
Potential of Reducing the Environmental Impact of Aviation by Using Hydrogen. Part I: Background, Prospect and Challenges
,”
Aeronaut. J.
,
110
(
1110
), pp.
533
540
.10.1017/S000192400000141X
3.
Barlow
,
R. S.
,
Dunn
,
M. J.
,
Sweeney
,
M. S.
, and
Hochgreb
,
S.
,
2012
, “
Effects of Preferential Transport in Turbulent Bluff-Body-Stabilized Lean Premixed CH4/Air Flames
,”
Combust. Flame
,
159
(
8
), pp.
2563
2575
.10.1016/j.combustflame.2011.11.013
4.
Swart
,
J. A. M. D.
,
Bastiaans
,
R. J. M.
,
Oijen
,
J. A. V.
,
Goey
,
L. P. H. D.
, and
Cant
,
R. S.
,
2010
, “
Inclusion of Preferential Diffusion in Simulations of Premixed Combustion of Hydrogen/Methane Mixtures With Flamelet Generated Manifolds
,”
Flow, Turbul. Combust.
,
85
(
3–4
), pp.
473
511
.10.1007/s10494-010-9279-y
5.
Ranga Dinesh
,
K.
,
Shalaby
,
H.
,
Luo
,
K.
,
van Oijen
,
J.
, and
Thévenin
,
D.
,
2016
, “
High Hydrogen Content Syngas Fuel Burning in Lean Premixed Spherical Flames at Elevated Pressures: Effects of Preferential Diffusion
,”
Int. J. Hydrogen Energy
,
41
(
40
), pp.
18231
18249
.10.1016/j.ijhydene.2016.07.086
6.
Matalon
,
M.
,
Cui
,
C.
, and
Bechtold
,
J.
,
2003
, “
Hydrodynamic Theory of Premixed Flames: Effects of Stoichiometry, Variable Transport Coefficients and Arbitrary Reaction Orders
,”
J. Fluid Mech.
,
487
(
6
), pp.
179
210
.10.1017/S0022112003004683
7.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
, “
Theoretical and Numerical Combustion
,”
Prog. Energy Combust. Sci.
,
28
(
1
).https://www.researchgate.net/publication/248068931_Theoretical_and_Numerical_Combustion
8.
Berger
,
L.
,
Grinberg
,
M.
,
Jürgens
,
B.
,
Lapenna
,
P. E.
,
Creta
,
F.
,
Attili
,
A.
, and
Pitsch
,
H.
,
2023
, “
Flame Fingers and Interactions of Hydrodynamic and Thermodiffusive Instabilities in Laminar Lean Hydrogen Flames
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
1525
1534
.10.1016/j.proci.2022.07.010
9.
Yang
,
F.
,
Law
,
C.
,
Sung
,
C.
, and
Zhang
,
H.
,
2010
, “
A Mechanistic Study of Soret Diffusion in Hydrogen–Air Flames
,”
Combust. Flame
,
157
(
1
), pp.
192
200
.10.1016/j.combustflame.2009.09.018
10.
Hilbert
,
R.
,
Tap
,
F.
,
El-Rabii
,
H.
, and
Thévenin
,
D.
,
2004
, “
Impact of Detailed Chemistry and Transport Models on Turbulent Combustion Simulations
,”
Prog. Energy Combust. Sci.
,
30
(
1
), pp.
61
117
.10.1016/j.pecs.2003.10.001
11.
Giacomazzi
,
E.
,
Picchia
,
F.
, and
Arcidiacono
,
N.
,
2008
, “
A Review of Chemical Diffusion: Criticism and Limits of Simplified Methods for Diffusion Coefficient Calculation
,”
Combust. Theory Modell.
,
12
(
1
), pp.
135
158
.10.1080/13647830701550370
12.
Oijen
,
J. A. V.
,
Donini
,
A.
,
Bastiaans
,
R. J.
,
ten Thije Boonkkamp
,
J. H.
, and
de Goey
,
L. P.
,
2016
, “
State-of-the-Art in Premixed Combustion Modeling Using Flamelet Generated Manifolds
,”
Prog. Energy Combust. Sci.
,
57
(
11
), pp.
30
74
.10.1016/j.pecs.2016.07.001
13.
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2014
, “
Recent Advances in Understanding of Flammability Characteristics of Hydrogen
,”
Prog. Energy Combust. Sci.
,
41
(
1
), pp.
1
55
.10.1016/j.pecs.2013.10.002
14.
Vance
,
F. H.
,
Shoshin
,
Y.
,
Oijen
,
J. A. V.
, and
Goey
,
L. P. D.
,
2019
, “
Effect of Lewis Number on Premixed Laminar Lean-Limit Flames Stabilized on a Bluff Body
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1663
1672
.10.1016/j.proci.2018.07.072
15.
Vance
,
F. H.
,
de Goey
,
P.
, and
van Oijen
,
J. A.
,
2020
, “
The Effect of Thermal Diffusion on Stabilization of Premixed Flames
,”
Combust. Flame
,
216
(
6
), pp.
45
57
.10.1016/j.combustflame.2020.02.006
16.
Beeckmann
,
J.
,
Hesse
,
R.
,
Kruse
,
S.
,
Berens
,
A.
,
Peters
,
N.
,
Pitsch
,
H.
, and
Matalon
,
M.
,
2017
, “
Propagation Speed and Stability of Spherically Expanding Hydrogen/Air Flames: Experimental Study and Asymptotics
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1531
1538
.10.1016/j.proci.2016.06.194
17.
Boivin
,
P.
,
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2013
, “
Four-Step and Three-Step Systematically Reduced Chemistry for Wide-Range H2–Air Combustion Problems
,”
Combust. Flame
,
160
(
1
), pp.
76
82
.10.1016/j.combustflame.2012.09.014
18.
Lacaze
,
G.
,
Richardson
,
E.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Spark Ignition in a Turbulent Methane Jet
,”
Combust. Flame
,
156
(
10
), pp.
1993
2009
.10.1016/j.combustflame.2009.05.006
19.
Bilger
,
R.
,
1989
, “
The Structure of Turbulent Nonpremixed Flames
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
475
488
.10.1016/S0082-0784(89)80054-2
20.
Yahou
,
T.
,
Dawson
,
J. R.
, and
Schuller
,
T.
,
2023
, “
Impact of Chamber Back Pressure on the Ignition Dynamics of Hydrogen Enriched Premixed Flames
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4641
4650
.10.1016/j.proci.2022.07.236
21.
Yahou
,
T.
,
Schuller
,
T.
, and
Dawson
,
J. R.
,
2024
, “
The Effect of Ignition Procedure on Flashback of Hydrogen-Enriched Flames
,”
ASME J. Eng. Gas Turbines Power
,
146
(
1
), p.
011023
.10.1115/1.4063538
22.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
, pp.
633
635
.10.1063/1.858280
23.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
24.
Rochette
,
B.
,
Collin-Bastiani
,
F.
,
Gicquel
,
L.
,
Vermorel
,
O.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2018
, “
Influence of Chemical Schemes, Numerical Method and Dynamic Turbulent Combustion Modeling on Les of Premixed Turbulent Flames
,”
Combust. Flame
,
191
, pp.
417
430
.10.1016/j.combustflame.2018.01.016
25.
Vogel
,
M.
, and
Maly
,
R.
,
1978
, “
Initiation and Propagation of Flame Fronts in Lean CH4-Air Mixtures by the Three Modes of the Ignition Spark
,”
Symp. (Int.) Combust.
,
17
(
1
), pp.
821
831
.10.1016/S0082-0784(79)80079-X
26.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.10.1115/1.1990201
27.
Yahou
,
T.
,
Schuller
,
T.
, and
Dawson
,
J. R.
,
2023
, “
Analysis of the Ignition Dynamics of H2-Enriched Premixed Flames Using High Speed PIV/OH-PLIF
,” Proceedings of the European Combustion Meeting, Rouen, France, Apr. 26–28.
You do not currently have access to this content.