Abstract

As electrified aircraft propulsion (EAP) systems continue to mature, more sophisticated hardware and software are being developed to balance operations among electric machines and gas-turbine engines. In hybrid-electric propulsion systems, the increased complexity resulting from integrating turbine-engine shafts with electric machines necessitates control methodologies to account for various physical domains. Ideal controllers for hybrid-electric engines manage systems, subsystems, and their interactions in a coordinated fashion, able to account for safety and performance goals while being computationally efficient. In a previous work, linear model predictive control (MPC) schemes were implemented in centralized and distributed frameworks on a nonlinear turbofan engine model as a proof of concept. However, these schemes were not evaluated for computational complexity, prompting further study. The research presented here develops hierarchical MPC schemes to reduce the computational burden of the previous MPC schemes. A two-tier framework is implemented, where a slower sampling MPC controls electric machines and determines fan-speed tracking goals for a faster sampling controller, which is either a MPC or a proportional-integral (PI) controller. The proposed designs are compared to the centralized MPC investigated previously, and performance is measured via fan speed tracking error, energy storage state-of-charge, and computation time. Results reveal that the hierarchical MPC scheme employing a lower-level PI controller improves computation time while maintaining comparable tracking and state-of-charge regulation to the centralized scheme.

References

1.
Pearce
,
B.
,
2023
, “
NASA Aeronautics Strategic Implementation Plan 2023
,” accessed Nov. 1, 2023, https://www.nasa.gov/wp-content/uploads/2021/04/sip-2023-final-508.pdf.
2.
Simon
,
D. L.
,
Thomas
,
R.
, and
Dunlap
,
K. M.
,
2022
, “
Considerations for the Extension of Gas Path Analysis to Electrified Aircraft Propulsion Systems
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031004
.10.1115/1.4052424
3.
Simon
,
D. L.
,
Connolly
,
J. W.
, and
Culley
,
D. E.
,
2020
, “
Control Technology Needs for Electrified Aircraft Propulsion Systems
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p. 011025.10.1115/1.4044969
4.
Ma
,
Z.
,
Zhang
,
X.
,
Huang
,
J.
, and
Zhao
,
B.
,
2019
, “
Stability-Constraining-Dichotomy-Solution-Based Model Predictive Control to Improve the Stability of Power Conversion System in the MEA
,”
IEEE Trans. Ind. Electron.
,
66
(
7
), pp.
5696
5706
.10.1109/TIE.2018.2875418
5.
Kou
,
P.
,
Wang
,
J.
, and
Liang
,
D.
,
2021
, “
Powered Yaw Control for Distributed Electric Propulsion Aircraft: A Model Predictive Control Approach
,”
IEEE Trans. Transp. Electrification
,
7
(
4
), pp.
3006
3020
.10.1109/TTE.2021.3068724
6.
Wang
,
X.
,
Atkin
,
J.
,
Bazmohammadi
,
N.
,
Bozhko
,
S.
, and
Guerrero
,
J. M.
,
2021
, “
Optimal Load and Energy Management of Aircraft Microgrids Using Multi-Objective Model Predictive Control
,”
Sustainability
,
13
(
24
), p.
13907
.10.3390/su132413907
7.
Russo
,
A.
,
Canciello
,
G.
, and
Cavallo
,
A.
,
2021
, “
MPC Based Sliding Mode Control for More Electric Aircraft Application
,” 22nd IEEE International Conference on Industrial Technology (
ICIT
), Vol. 1, Valencia, Spain, Mar. 10–12, pp.
74
79
.10.1109/ICIT46573.2021.9453663
8.
Almeida
,
F.
,
2022
, “
Management of Electrical Power Generation on Gas Turbine With Model Predictive Control
,”
AIAA
Paper No. 2022-0444.10.2514/6.2022-0444
9.
Zhang
,
J.
,
Roumeliotis
,
I.
, and
Zolotas
,
A.
,
2022
, “
Nonlinear Model Predictive Control-Based Optimal Energy Management for Hybrid Electric Aircraft Considering Aerodynamics-Propulsion Coupling Effects
,”
IEEE Trans. Transp. Electrification
,
8
(
2
), pp.
2640
2653
.10.1109/TTE.2021.3137260
10.
Doff-Sotta
,
M.
,
Cannon
,
M.
, and
Bacic
,
M.
,
2023
, “
Predictive Energy Management for Hybrid Electric Aircraft Propulsion Systems
,”
IEEE Trans. Control Syst. Technol.
,
31
(
2
), pp.
602
614
.10.1109/TCST.2022.3193295
11.
Rawlings
,
J. B.
, and
Mayne
,
D. Q.
,
2009
,
Model Predictive Control: Theory and Design
, Vol.
2.
Nob Hill Publishing
,
Madison, WI
.
12.
Hill
,
E.
,
Amthor
,
A. E.
,
Soloway
,
D. I.
,
Simon
,
D. L.
, and
Connolly
,
J. W.
,
2023
, “
Model Predictive Control Strategies for Turbine Electrified Energy Management
,”
ASME J. Eng. Gas Turbines Power
, pp.
1
24
.10.1115/1.4063783
13.
Johansen
,
T. A.
,
2017
, “
Toward Dependable Embedded Model Predictive Control
,”
IEEE Syst. J.
,
11
(
2
), pp.
1208
1219
.10.1109/JSYST.2014.2368129
14.
Zhang
,
J.
,
Roumeliotis
,
I.
, and
Zolotas
,
A.
,
2022
, “
Sustainable Aviation Electrification: A Comprehensive Review of Electric Propulsion System Architectures, Energy Management, and Control
,”
Sustainability
,
14
(
10
), p.
5880
.10.3390/su14105880
15.
Eren
,
U.
,
Prach
,
A.
,
Koçer
,
B. B.
,
Raković
,
S. V.
,
Kayacan
,
E.
, and
Açıkmeşe
,
B.
,
2017
, “
Model Predictive Control in Aerospace Systems: Current State and Opportunities
,”
J. Guid., Control, Dyn.
,
40
(
7
), pp.
1541
1566
.10.2514/1.G002507
16.
Alleyne
,
A. G.
, and
Aksland
,
C. T.
,
2022
, “
Control as an Enabler for Electrified Mobility
,”
Annu. Rev. Control, Rob., Auton. Syst.
,
5
(
1
), pp.
659
688
.10.1146/annurev-control-042920-012513
17.
Koeln
,
J. P.
,
Pangborn
,
H. C.
,
Williams
,
M. A.
,
Kawamura
,
M. L.
, and
Alleyne
,
A. G.
,
2020
, “
Hierarchical Control of Aircraft Electro-Thermal Systems
,”
IEEE Trans. Control Syst. Technol.
,
28
(
4
), pp.
1218
1232
.10.1109/TCST.2019.2905221
18.
Wang
,
W.
, and
Koeln
,
J. P.
,
2020
, “
Hierarchical Multi-Timescale Energy Management for Hybrid-Electric Aircraft
,”
ASME
Paper No. DSCC2020-3190.10.1115/DSCC2020-3190
19.
Aksland
,
C. T.
, and
Alleyne
,
A. G.
,
2020
, “
Experimental Model and Controller Validation for a Series Hybrid Unmanned Aerial Vehicle
,” American Control Conference (
ACC
),
Denver, CO
, July 1–3, pp.
4154
4160
.10.23919/ACC45564.2020.9147529
20.
Aksland
,
C. T.
, and
Alleyne
,
A. G.
,
2021
, “
Hierarchical Model-Based Predictive Controller for a Hybrid UAV Powertrain
,”
Control Eng. Pract.
,
115
, p.
104883
.10.1016/j.conengprac.2021.104883
21.
Aksland
,
C. T.
,
Tannous
,
P. J.
,
Wagenmaker
,
M. J.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2023
, “
Hierarchical Predictive Control of an Unmanned Aerial Vehicle Integrated Power, Propulsion, and Thermal Management System
,”
IEEE Trans. Control Syst. Technol.
,
31
(
3
), pp.
1280
1295
.10.1109/TCST.2022.3220913
22.
Chapman
,
J. W.
, and
Litt
,
J. S.
,
2017
, “
Control Design for an Advanced Geared Turbofan Engine
,”
AIAA
Paper No. 2017-4820.10.2514/6.2017-4820
23.
Chapman
,
J. W.
,
Lavelle
,
T. M.
,
May
,
R. D.
,
Litt
,
J. S.
, and
Guo
,
T.-H.
,
2014
,
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide
,
NASA
,
Cleveland, OH
, Report No. NASA/TM-2014-216638.
24.
Chapman
,
J. W.
, and
Litt
,
J. S.
,
2018
, “
An Approach for Utilizing Power Flow Modeling for Simulations of Hybrid Electric Propulsion Systems
,”
AIAA
Paper No. 2018-5018.10.2514/6.2018-5018
25.
Culley
,
D. E.
,
Kratz
,
J. L.
, and
Thomas
,
G. L.
,
2018
, “
Turbine Electrified Energy Management (TEEM) For Enabling More Efficient Engine Designs
,”
AIAA
Paper No. 2018-4798.10.2514/6.2018-4798
26.
Kratz
,
J. L.
,
Culley
,
D. E.
, and
Thomas
,
G. L.
,
2019
, “
A Control Strategy for Turbine Electrified Energy Management
,”
AIAA
Paper No. 2019-4499.10.2514/6.2019-4499
27.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi: A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Programming Computation
,
11
(
1
), pp.
1
36
.10.1007/s12532-018-0139-4
You do not currently have access to this content.