Abstract

Hydrogen or hydrogen blend fuels are expected to replace natural gas in land-based industrial gas turbines (IGTs) to support a greener power economy. Silicon carbide (SiC) base ceramic matrix composites (CMCs) are considered for replacement of Ni-based superalloys to facilitate future efficiency improvements. SiC CMCs require environmental barrier coatings (EBCs) to mitigate volatilization from high-temperature steam, thus making the EBC lifetime critical information for identifying CMC component lifetimes. The goal of this project is to determine the maximum bond coating temperature underneath the EBC for achieving an IGT component lifetime goal of 25,000 h, which is far greater than current CMC component lifetime requirements for aeroturbine applications. To provide data for the lifetime model, laboratory testing used atmospheric plasma-sprayed rare-earth silicate EBCs on monolithic SiC substrates with an intermediate Si bond coating. Specimens exposed to 1-h thermal cycles in flowing air–steam environments and reaction kinetics were assessed from 700 °C to 1350 °C by measuring the thickness of the thermally grown silica scales. The silica growth and phase transformation appear critical in predicting EBC lifetime and several strategies have been explored to reduce the oxide growth rate and improve EBC durability at elevated temperatures. Advanced characterization using Raman spectroscopy has helped clarify this system.

References

1.
Gardiner
,
G.
,
2015
, “
Aeroengine Composites, Part 1: The CMC Invasion
,”
Composites World
, Cincinnati, OH.
2.
Opila
,
E. J.
,
2003
, “
Oxidation and Volatilization of Silica Formers in Water Vapor
,”
J. Am. Ceram. Soc.
,
86
(
8
), pp.
1238
1248
.10.1111/j.1151-2916.2003.tb03459.x
3.
Kimmel
,
J.
,
Miriyala
,
N.
,
Price
,
J.
,
More
,
K.
,
Tortorelli
,
P.
,
Eaton
,
H.
,
Linsey
,
G.
, and
Sun
,
E.
,
2002
, “
Evaluation of CFCC Liners With EBC After Field Testing in a Gas Turbine
,”
J. Eur. Ceram. Soc.
,
22
(
14–15
), pp.
2769
2775
.10.1016/S0955-2219(02)00142-5
4.
Eaton
,
H. E.
, and
Linsey
,
G. D.
,
2002
, “
Accelerated Oxidation of SiC CMC's by Water Vapor and Protection Via Environmental Barrier Coating Approach
,”
J. Eur. Ceram. Soc.
,
22
(
14–15
), pp.
2741
2747
.10.1016/S0955-2219(02)00141-3
5.
van Roode
,
M.
,
Price
,
J.
,
Kimmel
,
J.
,
Miriyala
,
N.
,
Leroux
,
D.
,
Fahme
,
A.
, and
Smith
,
K.
,
2007
, “
Ceramic Matrix Composite Combustor Liners: A Summary of Field Evaluations
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
21
30
.10.1115/1.2181182
6.
Lee
,
K. N.
,
Fox
,
D. S.
, and
Bansal
,
N. P.
,
2005
, “
Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics
,”
J. Eur. Ceram. Soc.
,
25
(
10
), pp.
1705
1715
.10.1016/j.jeurceramsoc.2004.12.013
7.
Gleeson
,
B.
,
2006
, “
Thermal Barrier Coatings for Aeroengine Applications
,”
J. Propul. Power
,
22
(
2
), pp.
375
383
.10.2514/1.20734
8.
Kumar
,
V.
, and
Balasubramanian
,
K.
,
2016
, “
Progress Update on Failure Mechanisms of Advanced Thermal Barrier Coatings: A Review
,”
Prog. Org. Coat.
,
90
, pp.
54
82
.10.1016/j.porgcoat.2015.09.019
9.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080801
.10.1115/1.4048865
10.
Suzuki
,
K.
,
Matsumura
,
Y.
,
Takata
,
K.
,
Hada
,
S.
,
Yuri
,
M.
, and
Masada
,
J.
,
2018
, “
Evolution of MHPS Large Frame Gas Turbines: J to Air-Cooled JAC
,”
ASME
Paper No. GT2018-77273.10.1115/GT2018-77273
11.
Stefan
,
E.
,
Talic
,
B.
,
Larring
,
Y.
,
Gruber
,
A.
, and
Peters
,
T. A.
,
2022
, “
Materials Challenges in Hydrogen-Fuelled Gas Turbines
,”
Int. Mater. Rev.
,
67
(
5
), pp.
461
486
.10.1080/09506608.2021.1981706
12.
Ridley
,
M.
,
Garcia
,
E.
,
Kane
,
K.
,
Sampath
,
S.
, and
Pint
,
B.
,
2023
, “
Environmental Barrier Coatings on Enhanced Roughness SiC: Effect of Plasma Spraying Conditions on Properties and Performance
,”
J. Eur. Ceram. Soc.
,
43
(
14
), pp.
6473
6481
.10.1016/j.jeurceramsoc.2023.06.049
13.
Garcia
,
E.
,
Lee
,
H.
, and
Sampath
,
S.
,
2019
, “
Phase and Microstructure Evolution in Plasma Sprayed Yb2Si2O7 Coatings
,”
J. Eur. Ceram. Soc.
,
39
(
4
), pp.
1477
1486
.10.1016/j.jeurceramsoc.2018.11.018
14.
Ridley
,
M.
,
Kane
,
K.
,
Lance
,
M.
,
Parker
,
C.
,
Su
,
Y.
,
Sampath
,
S.
,
Garcia
,
E.
,
Sweet
,
M.
,
O'Connor
,
M.
, and
Pint
,
B.
,
2023
, “
Steam Oxidation and Microstructural Evolution of Rare Earth Silicate Environmental Barrier Coatings
,”
J. Am. Ceram. Soc.
,
106
(
1
), pp.
613
620
.10.1111/jace.18769
15.
Su
,
Y. F.
,
Stack
,
P. I. M.
,
Stephens
,
C. J.
,
Kane
,
K. A.
,
Dryepondt
,
S.
,
Pillai
,
R.
,
Pint
,
B. A.
, and
Tossey
,
B. M.
,
2021
, “
Quantifying High Temperature Corrosion
,” NACE CORROSION, Houston, TX, Apr. 19–30, Paper No.
NACE C2021-16805
.https://onepetro.org/NACECORR/proceedings-abstract/CORR21/2-CORR21/D021S009R005/464033
16.
Deal
,
B. E.
, and
Grove
,
A. S.
,
1965
, “
General Relationship for the Thermal Oxidation of Silicon
,”
J. Appl. Phys.
,
36
(
12
), pp.
3770
3778
.10.1063/1.1713945
17.
Pint
,
B. A.
,
Stack
,
P.
, and
Kane
,
K. A.
,
2021
, “
Predicting EBC Temperature Limits for Industrial Gas Turbines
,”
ASME
Paper No. GT2021-59408.10.1115/GT2021-59408
18.
Kane
,
K.
,
Garcia
,
E.
,
Lance
,
M.
,
Parker
,
C.
,
Sampath
,
S.
, and
Pint
,
B.
,
2022
, “
Accelerated Oxidation During 1350 °C Cycling of Ytterbium Silicate Environmental Barrier Coatings
,”
J. Am. Ceram. Soc.
,
105
(
4
), pp.
2754
2763
.10.1111/jace.18231
19.
Leadbetter
,
A. J.
, and
Wright
,
A. F.
,
1976
, “
The α–β Transition in the Cristobalite Phases of SiO2 and AIPO4 I. X-Ray Studies
,”
Philos. Mag. J. Theor. Exp. Appl. Phys.
,
33
(
1
), pp.
105
112
.10.1080/14786437608221095
20.
Lance
,
M. J.
,
Ridley
,
M. J.
,
Kane
,
K. A.
, and
Pint
,
B. A.
,
2023
, “
Raman Spectroscopic Characterization of SiO2 Phase Transformation and Si Substrate Stress Relevant to EBC Performance
,”
J. Am. Ceram. Soc.
,
106
(
10
), pp.
6205
6210
.10.1111/jace.19190
You do not currently have access to this content.