Abstract

Flame dynamics, represented as a flame transfer matrix (FTM), is not directly measurable in test rigs and must be deduced from transfer matrix measurements of the combustion system. The burner-flame transfer matrix (BFTM) approach for FTM estimation is based on local pressure signals from microphones located upstream and downstream of the combustor. It combines acoustic measurements in nonreacting and reacting conditions, with the latter implicitly including flame dynamics. A simple matrix operation yields the FTM. However, this approach assumes loss-free wave propagation at constant speed of sound with no change in cross-sectional area between the microphones and the burner/flame. The present work demonstrates the limitations of these assumptions when applied to a test rig with effusion cooling, bypass annulus, and end contraction. This work proposes a method to infer the FTM for complex combustors by combining reactive transfer matrix measurements of the entire combustor with an accurate low-order model (LOM) of the test rig. This generalized method reduces to the BFTM approach as a special case. The Rolls-Royce SCARLET test rig, operating under realistic engine conditions, is used to analyze the capabilities of the proposed model-based inference method and the limitations of the BFTM approach. First, a LOM based on SCARLET's geometry and operating point is formulated using a generic FTM. This model visualizes the limitations of the BFTM approach concerning various physical and geometrical parameters. Finally, experimental data is used to infer the FTM of SCARLET using the proposed approach.

References

1.
Lieuwen
,
T.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines
, Vol.
210
,
AIAA
,
Reston, VA
.
2.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
3.
Merk
,
H. J.
,
1957
, “
Analysis of Heat-Driven Oscillations of Gas Flows
,”
Appl. Sci. Res.
,
6
(
4
), pp.
317
336
.10.1007/BF03184653
4.
Bohn
,
D.
, and
Deucker
,
E.
,
1993
, “
An Acoustical Model to Predict Combustion Driven Oscillations
,”
20th International Congress on Combustion Engines
,
CIMAC
, London, UK, Mar.
17
20
.https://www.osti.gov/etdeweb/biblio/10196280
5.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
6.
Paschereit
,
C. O.
, and
Polifke
,
W.
,
1997
, “
Characterization of Lean Premixed Gas Turbine Burners as Acoustic Multi-Ports
,”
APS/DFD Annual Meeting, APS
, San Francisco, NC, Nov. 23–25.https://www.researchgate.net/profile/Wolfgang-Polifke/publication/234438623_Characterization_of_lean_premixed_gas_turbine_burners_as_acoustic_multi-ports/links/5e6cb11e299bf12e23c36b0a/Characterization-of-lean-premixed-gasturbine-burners-as-acoustic-multi-ports.pdf
7.
Dowling
,
A. P.
,
1999
, “
Thermoacoustic Instability
,”
6th International Congress on Sound and Vibration
, Copenhagen, Denmark, pp.
3277
3292
.
8.
Eckstein
,
J.
, and
Sattelmayer
,
T.
,
2006
, “
Low-Order Modeling of Low-Frequency Combustion Instabilities in Aeroengines
,”
J. Propul. Power
,
22
(
2
), pp.
425
432
.10.2514/1.15757
9.
Schuermans
,
B.
,
Guethe
,
F.
,
Pennell
,
D.
,
Guyot
,
D.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured Under Full Engine Pressure
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
111503
.10.1115/1.4000854
10.
Munjal
,
M. L.
,
2014
,
Acoustics of Ducts and Mufflers
, 2nd ed.,
Wiley
,
Chichester, UK
.
11.
Emmert
,
T.
,
2016
, “
State Space Modeling of Thermoacoustic Systems With Application to Intrinsic Feedback
,”
Ph.D. thesis
,
Technical University of Munich
,
Munich, Germany
.https://mediatum.ub.tum.de/doc/1306410/1306410.pdf
12.
Pankiewitz
,
C.
,
Fischer
,
A.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2003
, “
Computation of Transfer Matrices for Gas Turbine Combustors Including Acoustics/Flame Interaction
,”
AIAA
Paper No. 2003-3295.10.2514/6.2003-3295
13.
Bothien
,
M.
,
Lauper
,
D.
,
Yang
,
Y.
, and
Scarpato
,
A.
,
2019
, “
Reconstruction and Analysis of the Acoustic Transfer Matrix of a Reheat Flame From Large-Eddy Simulations
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021018
.10.1115/1.4041151
14.
Gant
,
F.
,
Cuquel
,
A.
, and
Bothien
,
M. R.
,
2022
, “
Autoignition Flame Transfer Matrix: Analytical Model Versus Large Eddy Simulations
,”
Int. J. Spray Combust. Dyn.
,
14
(
1–2
), pp.
72
81
.10.1177/17568277221086261
15.
Reinhardt
,
H.
,
Alanyal Ioğlu
,
Ç. O.
,
Fischer
,
A.
,
Lahiri
,
C.
,
Nicolai
,
H.
, and
Hasse
,
C.
,
2023
, “
Simulation of the Thermoacoustic Response of an Aero-Engine Gas Turbine Fuel Injector Using a Hybrid CFD-CAA Method
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111016
.10.1115/1.4063335
16.
Schuermans
,
B.
,
Polifke
,
W.
, and
Paschereit
,
C. O.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
ASME
Paper No. 99-GT-132.10.1115/99-GT-132
17.
Munjal
,
M. L.
, and
Doige
,
A. G.
,
1990
, “
Theory of a Two Source-Location Method for Direct Experimental Evaluation of the Four-Pole Parameters of an Aeroacoustic Element
,”
J. Sound Vib.
,
141
(
2
), pp.
323
333
.10.1016/0022-460X(90)90843-O
18.
Peters
,
M. C. A. M.
,
Hirschberg
,
A.
,
Reijnen
,
A. J.
, and
Wijnands
,
A. P. J.
,
1993
, “
Damping and Reflection Coefficient Measurements for an Open Pipe at Low Mach and Low Helmholtz Numbers
,”
J. Fluid Mech.
,
256
, pp.
499
534
.10.1017/S0022112093002861
19.
Paschereit
,
C. O.
, and
Polifke
,
W.
,
1998
, “
Investigation of the Thermo-Acoustic Characteristics of a Lean Premixed Gas Turbine Burner
,”
ASME
Paper No. 98-GT-582.10.1115/98-GT-582
20.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
21.
Bellucci
,
V.
,
Schuermans
,
B.
,
Nowak
,
D.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2005
, “
Thermoacoustic Modeling of a Gas Turbine Combustor Equipped With Acoustic Dampers
,”
ASME J. Turbomach.
,
127
(
2
), pp.
372
379
.10.1115/1.1791284
22.
Schuermans
,
B.
,
2003
, “
Modeling and Control of Thermoacoustic Instabilities
,”
Ph.D. thesis
,
École Polytechnique Fédérale de Lausanne
,
Lausanne, Switzerland
.https://core.ac.uk/download/pdf/147900077.pdf
23.
Schimek
,
S.
,
Göke
,
S.
,
Schrödinger
,
C.
, and
Paschereit
,
C. O.
,
2012
, “
Flame Transfer Function Measurements With CH4 and H2 Fuel Mixtures at Ultra Wet Conditions in a Swirl Stabilized Premixed Combustor
,”
ASME
Paper No. GT2012-69788.10.1115/GT2012-69788
24.
Bobusch
,
B. C.
,
Moeck
,
J. P.
,
Paschereit
,
C. O.
, and
Sadig
,
S.
,
2012
, “
Thermoacoustic Stability Analysis of a Kerosene-Fueled Lean Direct Injection Combustor Employing Acoustically and Optically Measured Transfer Matrices
,”
ASME
Paper No. GT2012-69034.10.1115/GT2012-69034
25.
Bade
,
S.
,
Wagner
,
M.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermans
,
B.
,
2014
, “
Influence of Fuel-Air Mixing on Flame Dynamics of Premixed Swirl Burners
,”
ASME
Paper No. GT2014-25381.10.1115/GT2014-25381
26.
Blondé
,
A.
,
Schuermans
,
B.
,
Pandey
,
K.
, and
Noiray
,
N.
,
2023
, “
Effect of Hydrogen Enrichment on Transfer Matrices of Fully and Technically Premixed Swirled Flames
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121009
.10.1115/1.4063415
27.
Alanyal Ioğlu
,
C.
,
Reinhardt
,
H.
,
Fischer
,
A.
,
Lahiri
,
C.
,
Nicolai
,
H.
, and
Hasse
,
C.
,
2023
, “
Comparison of Acoustic, Optic, and Heat Release Rate Based Flame Transfer Functions for a Lean-Burn Injector Under Engine-Like Conditions
,”
Symposium on Thermoacoustics in Combustion
, Zurich, Switzerland, Sept.
11
14
.https://www.researchgate.net/publication/376377212_Comparison_of_acoustic_optical_and_heat_release_rate_based_flame_transfer_functions_for_a_lean-burn_injector_under_enginelike_conditions
28.
Eder
,
A. J.
,
Fischer
,
A.
,
Lahiri
,
C.
,
Merk
,
M.
,
Staufer
,
M.
,
Eggels
,
R.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2023
, “
Identification of the Dynamics of a Turbulent Spray Flame at High Pressure
,”
Symposium on Thermoacoustics in Combustion
, Zurich, Switzerland, Sept.
11
14
.https://www.researchgate.net/publication/373522823_Identification_of_the_dynamics_of_a_turbulent_spray_flame_at_high_pressure
29.
Fischer
,
A.
,
Lahiri
,
C.
, and
Doerr
,
T.
,
2017
, “
Design, Build, and Commissioning of the New Thermo-Acoustics Combustion Test Rig SCARLET
,”
Rolls-Royce Deutschland
, Report No. DLRK2017-450116.
30.
Fischer
,
A.
, and
Lahiri
,
C.
,
2021
, “
Ranking of Aircraft Fuel-Injectors Regarding Low Frequency Thermoacoustics Based on an Energy Balance Method
,”
ASME
Paper No. GT2021-59561.10.1115/GT2021-59561
31.
Lavrentjev
,
J.
,
Åbom
,
M.
, and
Bodén
,
H.
,
1995
, “
A Measurement Method for Determining the Source Data of Acoustic Two-Port Sources
,”
J. Sound Vib.
,
183
(
3
), pp.
517
531
.10.1006/jsvi.1995.0268
32.
Ben-Israel
,
A.
, and
Greville
,
T. N. E.
,
2003
,
Generalized Inverses: Theory and Applications
, 2nd ed.,
Springer
,
New York
.
33.
Åbom
,
M.
,
1992
, “
A Note on the Experimental Determination of Acoustical Two-Port Matrices
,”
J. Sound Vib.
,
155
(
1
), pp.
185
188
.10.1016/0022-460X(92)90655-H
34.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831.10.1115/GT2004-53831
35.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. United Acust.
,
102
(
5
), pp.
824
833
.10.3813/AAA.918997
36.
Gentemann
,
A.
,
Fischer
,
A.
,
Evesque
,
S.
, and
Polifke
,
W.
,
2003
, “
Acoustic Transfer Matrix Reconstruction and Analysis for Ducts With Sudden Change of Area
,”
AIAA
Paper No. 3142.10.2514/6.3142
37.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors
,”
Combust. Flame
,
157
(
9
), pp.
1718
1730
.10.1016/j.combustflame.2010.04.016
38.
Van Horn
,
E. M.
, and
Scarborough
,
D. E.
,
2022
, “
Low-Frequency Acoustic Response of Gas Turbine Perforated Plate and Axial Swirler
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051008
.10.1115/1.4053394
39.
Meindl
,
M.
,
Merk
,
M.
,
Fritz
,
F.
, and
Polifke
,
W.
,
2019
, “
Determination of Acoustic Scattering Matrices From Linearized Compressible Flow Equations
,”
J. Theor. Comput. Acoust.
,
27
(
3
), p.
1850027
.10.1142/S2591728518500275
40.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillation
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
41.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
42.
Strobio Chen
,
L.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2016
, “
Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front
,”
Combust. Flame
,
166
, pp.
170
180
.10.1016/j.combustflame.2016.01.015
43.
Polifke
,
W.
,
2020
, “
Modeling and Analysis of premixed flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Combust. Sci.
,
79
, p.
100845
.10.1016/j.pecs.2020.100845
44.
MacKay
,
D. J.
,
2003
,
Information Theory, Inference, and Learning Algorithms
,
Cambridge University Press
,
New York
.
45.
Yoko
,
M.
, and
Juniper
,
M. P.
,
2023
, “
Data-Driven Modelling of Thermoacoustic Instability in a Ducted Conical Flame
,”
Symposium on Thermoacoustics in Combustion
, Zurich, Switzerland, Sept.
11
14
.
You do not currently have access to this content.