Abstract

This paper investigates the temperature fields in a centrally staged swirl spray combustor using two-line OH planar laser induced fluorescence (PLIF) thermometry at elevated inlet pressures and temperatures up to 0.62 MPa and 650 K. The pilot and main stages of the combustor were supplied with RP-3 kerosene. OH radicals were excited using the Q1(5) and Q1(14) transitions within the A2Σ←X2Π (1,0) band. Two laser excitation systems were operated simultaneously, where the two beams were spatially combined and separated by a small interval in time. The PLIF signals excited at the two wavelengths were captured by two identical sets of imaging system. The calibration coefficient needed for quantitative conversion from fluorescence ratio to temperature was determined based on results from independent coherent anti-Stokes Raman scattering (CARS) measurements. A joint threshold mask was developed to remove the noise and weak signals in the raw PLIF images. The high temperature zones in the temperature field were then obtained, and the pilot and main stage flames were identified. In addition, the radial position of the pilot flame showed marked variations at a nominally fixed condition. By extracting the radial profiles, a consistency between the peaks of PLIF intensity and temperature was found, suggesting that PLIF images could be a qualitative substitute for the high temperature zones in the temperature fields of these swirl spray flames. This study demonstrates the feasibility of temperature field measurements using two-line OH PLIF in aero-engine model combustors.

References

1.
Zeng
,
Q.
, and
Chen
,
X.
,
2023
, “
Combustor Technology of High Temperature Rise for Aero Engine
,”
Prog. Aerosp. Sci.
,
140
, p.
100927
.10.1016/j.paerosci.2023.100927
2.
Tao
,
W.
,
Wang
,
J.
,
Mao
,
R.
,
Wang
,
X.
,
Zhang
,
C.
, and
Lin
,
Y.
,
2019
, “
Generation and Migration of Hot Streaks Within an LPP Combustor
,”
ASME
Paper No. GT2019-90601.10.1115/GT2019-90601
3.
Temme
,
J. E.
,
Allison
,
P. M.
, and
Driscoll
,
J. F.
,
2014
, “
Combustion Instability of a Lean Premixed Prevaporized Gas Turbine Combustor Studied Using Phase-Averaged PIV
,”
Combust. Flame
,
161
(
4
), pp.
958
970
.10.1016/j.combustflame.2013.09.021
4.
Hassan
,
S. H.
,
Emara
,
A. A.
, and
Elkady
,
M. A.
,
2019
, “
An Influence of a Fluidic Oscillator Insertion in a Swirl-Stabilized Burner on Turbulent Premixed Flame
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061001
.10.1115/1.4041922
5.
Cantu
,
L. M. L.
,
Grohmann
,
J.
,
Meier
,
W.
, and
Aigner
,
M.
,
2018
, “
Temperature Measurements in Confined Swirling Spray Flames by Vibrational Coherent Anti-Stokes Raman Spectroscopy
,”
Exp. Therm. Fluid Sci.
,
95
, pp.
52
59
.10.1016/j.expthermflusci.2018.01.029
6.
Evans
,
M. J.
,
Sidey
,
J. A. M.
,
Ye
,
J.
,
Medwell
,
P. R.
,
Dally
,
B. B.
, and
Mastorakos
,
E.
,
2019
, “
Temperature and Reaction Zone Imaging in Turbulent Swirling Dual-Fuel Flames
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2159
2166
.10.1016/j.proci.2018.07.076
7.
Su
,
Y.
,
Zhang
,
B.
,
Chen
,
Y.
,
Sui
,
C.
, and
Chen
,
W.
,
2022
, “
3D Velocity and Temperature Distribution Measurement and Characteristic Analysis of Swirling Combustion
,”
Measurement
,
193
, p.
110949
.10.1016/j.measurement.2022.110949
8.
Dulin
,
V.
,
Sharaborin
,
D.
,
Tolstoguzov
,
R.
,
Lobasov
,
A.
,
Chikishev
,
L.
,
Markovich
,
D.
,
Wang
,
S.
,
Fu
,
C.
,
Liu
,
X.
,
Li
,
Y.
, and
Gao
,
Y.
,
2021
, “
Assessment of Single-Shot Temperature Measurements by Thermally-Assisted OH PLIF Using Excitation in the A2Σ+–X2Π (1-0) Band
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
1877
1883
.10.1016/j.proci.2020.07.025
9.
Giezendanner-Thoben
,
R.
,
Meier
,
U.
,
Meier
,
W.
, and
Aigner
,
M.
,
2005
, “
Phase-Locked Temperature Measurements by Two-Line OH PLIF Thermometry of a Self-Excited Combustion Instability in a Gas Turbine Model Combustor
,”
Flow, Turbul. Combust.
,
75
(
1–4
), pp.
317
333
.10.1007/s10494-005-8587-0
10.
Giezendanner-Thoben
,
R.
,
Meier
,
U.
,
Meier
,
W.
,
Heinze
,
J.
, and
Aigner
,
M.
,
2005
, “
Phase-Locked Two-Line OH Planar Laser-Induced Fluorescence Thermometry in a Pulsating Gas Turbine Model Combustor at Atmospheric Pressure
,”
Appl. Opt.
,
44
(
31
), pp.
6565
6577
.10.1364/AO.44.006565
11.
Slabaugh
,
C. D.
,
Pratt
,
A. C.
, and
Lucht
,
R. P.
,
2015
, “
Simultaneous 5 kHz OH-PLIF/PIV for the Study of Turbulent Combustion at Engine Conditions
,”
Appl. Phys. B
,
118
(
1
), pp.
109
130
.10.1007/s00340-014-5960-5
12.
Renaud
,
A.
,
Tachibana
,
S.
,
Arase
,
S.
, and
Yokomori
,
T.
,
2018
, “
Experimental Study of Thermo-Acoustic Instability Triggering in a Staged Liquid Fuel Combustor Using High-Speed OH-PLIF
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081505
.10.1115/1.4038915
13.
Chterev
,
I.
,
Rock
,
N.
,
Ek
,
H.
,
Emerson
,
B.
,
Seitzman
,
J.
,
Jiang
,
N.
,
Roy
,
S.
,
Lee
,
T.
,
Gord
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Simultaneous Imaging of Fuel, OH, and Three Component Velocity Fields in High Pressure, Liquid Fueled, Swirl Stabilized Flames at 5 kHz
,”
Combust. Flame
,
186
, pp.
150
165
.10.1016/j.combustflame.2017.07.021
14.
Yang
,
Z.
,
Yu
,
X.
,
Peng
,
J.
,
Wang
,
L.
,
Dong
,
Z.
,
Li
,
X.
,
Sun
,
S.
,
Meng
,
S.
, and
Xu
,
H.
,
2017
, “
Effects of N2, CO2, and H2O Dilutions on Temperature and Concentration Fields of OH in Methane Bunsen Flames by Using PLIF Thermometry and Bi-Directional PLIF
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
209
222
.10.1016/j.expthermflusci.2016.10.017
15.
Ayoola
,
B.
,
Hartung
,
G.
,
Armitage
,
C. A.
,
Hult
,
J.
,
Cant
,
R. S.
, and
Kaminski
,
C. F.
,
2009
, “
Temperature Response of Turbulent Premixed Flames to Inlet Velocity Oscillations
,”
Exp. Fluids
,
46
(
1
), pp.
27
41
.10.1007/s00348-008-0534-0
16.
Grib
,
S. W.
,
Fugger
,
C. A.
,
Hsu
,
P. S.
,
Jiang
,
N.
,
Roy
,
S.
, and
Schumaker
,
S. A.
,
2021
, “
Two-Dimensional Temperature in a Detonation Channel Using Two-Color OH Planar Laser-Induced Fluorescence Thermometry
,”
Combust. Flame
,
228
, pp.
259
276
.10.1016/j.combustflame.2021.02.002
17.
Kostka
,
S.
,
Roy
,
S.
,
Lakusta
,
P. J.
,
Meyer
,
T. R.
,
Renfro
,
M. W.
,
Gord
,
J. R.
, and
Branam
,
R.
,
2009
, “
Comparison of Line-Peak and Line-Scanning Excitation in Two-Color Laser-Induced-Fluorescence Thermometry of OH
,”
Appl. Opt.
,
48
(
32
), pp.
6332
6343
.10.1364/AO.48.006332
18.
Halls
,
B. R.
,
Hsu
,
P. S.
,
Roy
,
S.
,
Meyer
,
T. R.
, and
Gord
,
J. R.
,
2018
, “
Two-Color Volumetric Laser-Induced Fluorescence for 3D OH and Temperature Fields in Turbulent Reacting Flows
,”
Opt. Lett.
,
43
(
12
), pp.
2961
2964
.10.1364/OL.43.002961
19.
Sutton
,
G.
,
Levick
,
A.
,
Edwards
,
G.
, and
Greenhalgh
,
D.
,
2006
, “
A Combustion Temperature and Species Standard for the Calibration of Laser Diagnostic Techniques
,”
Combust. Flame
,
147
(
1–2
), pp.
39
48
.10.1016/j.combustflame.2006.07.013
20.
Tao
,
C.
,
Zhang
,
C.
,
Xue
,
X.
,
Fan
,
X.
,
Gao
,
J.
,
Feng
,
X.
, and
Gao
,
X.
,
2023
, “
Flame Dynamics and Combustion Instability Induced by Flow-Flame Interactions in a Centrally-Staged Combustor
,”
Aerosp. Sci. Technol.
,
142
, p.
108635
.10.1016/j.ast.2023.108635
21.
Eckbreth
,
A. C.
,
1996
,
Laser Diagnostics for Combustion Temperature and Species
,
CRC Press
,
London, UK
.
22.
Gordon
,
S.
, and
McBride
,
B. J.
,
1996
, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, NASA Lewis Research Center, Washington, DC.
23.
Bai
,
B.
,
Yang
,
W.
,
Qi
,
X.
,
Che
,
Q.
,
Zhou
,
Q.
,
Sun
,
W.
, and
Chen
,
S.
,
2023
, “
Experimental Study of Thermocouple Temperature Measurement Based on Coherent Anti-Stokes Raman Spectroscopy
,”
AIP Adv.
,
13
(
11
), p.
115216
.10.1063/5.0176359
24.
Richardson
,
D. R.
,
Jiang
,
N.
,
Blunck
,
D. L.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2016
, “
Characterization of Inverse Diffusion Flames in Vitiated Cross Flows Via Two-Photon Planar Laser-Induced Fluorescence of CO and 2-D Thermometry
,”
Combust. Flame
,
168
, pp.
270
285
.10.1016/j.combustflame.2016.03.005
25.
An
,
Q.
,
Kheirkhah
,
S.
,
Bergthorson
,
J.
,
Yun
,
S.
,
Hwang
,
J.
,
Lee
,
W. J.
,
Kim
,
M. K.
,
Cho
,
J. H.
,
Kim
,
H. S.
, and
Vena
,
P.
,
2021
, “
Flame Stabilization Mechanisms and Shape Transitions in a 3D Printed, Hydrogen Enriched, Methane/Air Low-Swirl Burner
,”
Int. J. Hydrogen Energy
,
46
(
27
), pp.
14764
14779
.10.1016/j.ijhydene.2021.01.112
You do not currently have access to this content.