Abstract

Hydrogen and ammonia are considered crucial carbon-free energy carriers optimally suited for seasonal chemical storage and balancing of the energy system. In this context, longitudinally staged combustion systems represent an attractive technology in power generation for their capability of achieving low NOx emissions while conserving high load and, crucially, fuel flexibility at high thermal efficiency. Such two-stage combustion systems have been successfully implemented for natural gas firing of gas turbines and, more recently, have shown significant potential for clean and efficient hydrogen-firing operation. However, optimal operation with ammonia-based fuel mixtures is yet to be established. In recent works, a novel Rich-Quench-Lean (RQL) operational concept was proposed to burn a fuel-rich mixture of partially decomposed ammonia and air (for equivalence ratios ϕ1.11.2) in the first stage of a longitudinally staged combustion system. Complete oxidation of the remaining (hydrogen) fuel is theoretically ensured by dilution-air addition downstream of the first stage combustor. However, any operational concept based on these near-stoichiometric combustion conditions, while minimizing undesired prompt NOx and N2O formation by ammonia oxidation, can potentially result in significant, and certainly unpractical, thermal load on the first stage combustor liner that needs to be mitigated. In the present study, we exploit a newly developed reactors-network model to efficiently investigate the NOx-emissions performance of a longitudinally staged combustion system fired with natural gas, hydrogen or ammonia. First, the reactors network framework is validated with experimental, computational and other similar reactor network results in the literature. Second, the optimal air distribution within the longitudinally staged combustion system is found for clean (low emissions) and efficient (complete fuel conversion) ammonia-firing operation. Third, the consequences of such “ammonia-optimized” air distribution on flame stabilization and NOx emissions in more conventional natural gas- and hydrogen-firing operation are considered. Finally, an optimal air and fuel distribution is suggested for the longitudinally staged combustion system on the basis that, while still ensuring robust flame stabilization and high turbine inlet temperature, it minimizes NOx emissions for all three fuels considered.

References

1.
Dreizler
,
A.
,
Pitsch
,
H.
,
Scherer
,
V.
,
Schulz
,
C.
, and
Janicka
,
J.
,
2021
, “
The Role of Combustion Science and Technology in Low and Zero Impact Energy Transformation Processes
,”
Appl. Energy Combust. Sci.
,
7
, p.
100040
.10.1016/j.jaecs.2021.100040
2.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
3.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W.
, and
Bowen
,
P.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
4.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
5.
Okafor
,
E. C.
,
Somarathne
,
K. K. A.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Towards the Development of an Efficient low-NOx Ammonia Combustor for a Micro Gas Turbine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4597
4606
.10.1016/j.proci.2018.07.083
6.
Ditaranto
,
M.
,
Saanum
,
I.
, and
Larfeldt
,
J.
,
2021
, “
Experimental Study on High Pressure Combustion of Decomposed Ammonia: How Can Ammonia Be Best Used in a Gas Turbine?
,”
ASME
Paper No. GT2021-60057.10.1115/GT2021-60057
7.
Indlekofer
,
T.
,
Wiseman
,
S.
,
Nogenmyr
,
K.-J.
,
Larfeldt
,
J.
, and
Gruber
,
A.
,
2023
, “
Numerical Investigation of Rich-Lean Staging in a SGT-750 Scaled Dry Low Emission Burner With Partially Decomposed Ammonia
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041018
.10.1115/1.4055725
8.
Tian
,
T.
,
Song
,
C.
,
Wang
,
H.
,
Xu
,
C.
,
Luo
,
K.
, and
Fan
,
J.
,
2023
, “
The Effects of Turbulence on the Flame Structure and NO Formation of Ammonia Turbulent Premixed Combustion at Various Equivalence Ratios
,”
Fuel
,
332
, p.
126127
.10.1016/j.fuel.2022.126127
9.
Bothien
,
M.
,
Ciani
,
A.
,
Wood
,
J.
, and
Fruechtel
,
G.
,
2019
, “
Sequential Combustion in Gas Turbines - the Key Technology for Burning High Hydrogen Contents With Low Emissions
,”
ASME
Paper No. GT2019-90798.10.1115/GT2019-90798
10.
Heggset
,
T.
,
Meyer
,
O. H.
,
Tay-Wo-Chong
,
L.
,
Ciani
,
A.
, and
Gruber
,
A.
,
2023
, “
Numerical Assessment of a Rich-Quench-Lean Staging Strategy for Clean and Efficient Combustion of Partially Decomposed Ammonia in the Constant Pressure Sequential Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
146
(
8
), pp.
1
30
.10.1115/1.4063958
11.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790.10.1115/GT2017-64790
12.
Orbegoso
,
E. M. M.
,
Romeiro
,
C. D.
,
Ferreira
,
S. B.
, and
da Silva
,
L. F. F.
,
2011
, “
Emissions and Thermodynamic Performance Simulation of an Industrial Gas Turbine
,”
J. Propul. Power
,
27
(
1
), pp.
78
93
.10.2514/1.47656
13.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F.
,
2017
, “
Review of Hybrid Emissions Prediction Tools and Uncertainty Quantification Methods for Gas Turbine Combustion Systems
,”
ASME
Paper No. GT2017-64271.10.1115/GT2017-64271
14.
Goh
,
E.
,
Sirignano
,
M.
,
Li
,
J.
,
Nair
,
V.
,
Emerson
,
B.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2019
, “
Prediction of Minimum Achievable NOx Levels for Fuel-Staged Combustors
,”
Combust. Flame
,
200
, pp.
276
285
.10.1016/j.combustflame.2018.11.027
15.
Goh
,
E.
,
Li
,
J.
,
Kim
,
N. Y.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2021
, “
Finite-Rate Entrainment Effects on Nitrogen Oxide (NOx) Emissions in Staged Combustors
,”
Combust. Flame
,
230
, p.
111434
.10.1016/j.combustflame.2021.111434
16.
Colorado
,
A.
, and
McDonell
,
V.
,
2014
, “
Reactor Network Analysis to Assess Fuel Composition Effects on NOx Emissions From a Recuperated Gas Turbine
,”
ASME
Paper No. GT2014-45691.10.1115/GT2014-45691
17.
Kroniger
,
D.
,
Lipperheide
,
M.
, and
Wirsum
,
M.
,
2017
, “
Effects of Hydrogen Fueling on NOx Emissions: A Reactor Model Approach for an Industrial Gas Turbine Combustor
,”
ASME
Paper No. GT2017-50855.10.1115/GT2017-50855
18.
Gubbi
,
S.
,
Cole
,
R.
,
Emerson
,
B.
,
Noble
,
D.
,
Steele
,
R.
,
Sun
,
W.
, and
Lieuwen
,
T.
,
2024
, “
Evaluation of Minimum NOx Emission From Ammonia Combustion
,”
ASME J. Eng. Gas Turbines Power
,
146
(
3
), p.
031023
.10.1115/1.4064219
19.
Turns
,
S. R.
, et al.,
1996
,
Introduction to Combustion
, Vol.
287
,
McGraw-Hill Companies
,
New York
.
20.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.10.1016/j.pecs.2008.07.003
21.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
(
2
), pp.
75
97
.10.1063/1.1723808
22.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
,
Reston, VI
.
23.
Miller
,
J. A.
,
Smooke
,
M. D.
,
Green
,
R. M.
, and
Kee
,
R. J.
,
1983
, “
Kinetic Modeling of the Oxidation of Ammonia in Flames
,”
Combust. Sci. Technol.
,
34
(
1–6
), pp.
149
176
.10.1080/00102208308923691
24.
Somarathne
,
K. D. K. A.
,
Hatakeyama
,
S.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2017
, “
Numerical Study of a Low Emission Gas Turbine Like Combustor for Turbulent Ammonia/Air Premixed Swirl Flames With a Secondary Air Injection at High Pressure
,”
Int. J. Hydrogen Energy
,
42
(
44
), pp.
27388
27399
.10.1016/j.ijhydene.2017.09.089
25.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 3.0.0, accessed Nov. 1, 2023, https://www.cantera.org
26.
Lechner
,
C.
, and
Seume
,
J.
,
2018
,
Stationäre Gasturbinen
,
Springer-Verlag
,
Berlin
.
27.
Ånestad
,
A.
,
Sampath
,
R.
,
Moeck
,
J.
,
Gruber
,
A.
, and
Worth
,
N. A.
,
2024
, “
The Structure and Stability of Premixed CH4, H2, and NH3/H2 Flames in an Axially Staged Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051002
.10.1115/1.4063718
28.
Kee
,
R. J.
,
Coltrin
,
M. E.
, and
Glarborg
,
P.
,
2005
,
Chemically Reacting Flow: Theory and Practice
,
Wiley
,
Hoboken, NJ
.
29.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, et al.,
1999
, "GRI Mech," Version 3.0, accessed Nov. 1, 2023, http://combustion.berkeley.edu/gri-mech/version30/text30.html
30.
Jiang
,
Y.
,
Gruber
,
A.
,
Seshadri
,
K.
, and
Williams
,
F.
,
2020
, “
An Updated Short Chemical-Kinetic Nitrogen Mechanism for Carbon-Free Combustion Applications
,”
Int. J. Energy Res.
,
44
(
2
), pp.
795
810
.10.1002/er.4891
31.
Stagni
,
A.
,
Cavallotti
,
C.
,
Arunthanayothin
,
S.
,
Song
,
Y.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
, and
Faravelli
,
T.
,
2020
, “
An Experimental, Theoretical and Kinetic-Modeling Study of the Gas-Phase Oxidation of Ammonia
,”
React. Chem. Eng.
,
5
(
4
), pp.
696
711
.10.1039/C9RE00429G
32.
Han
,
X.
,
Wang
,
Z.
,
Costa
,
M.
,
Sun
,
Z.
,
He
,
Y.
, and
Cen
,
K.
,
2019
, “
Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Air, NH3/H2/Air, NH3/CO/Air and NH3/CH4/Air Premixed Flames
,”
Combust. Flame
,
206
, pp.
214
226
.10.1016/j.combustflame.2019.05.003
33.
Gruber
,
A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Aditya
,
K.
,
Chen
,
J. H.
, and
Williams
,
F. A.
,
2021
, “
Direct Numerical Simulation of Hydrogen Combustion at Auto-Ignitive Conditions: Ignition, Stability and Turbulent Reaction-Front Velocity
,”
Combust. Flame
,
229
, p.
111385
.10.1016/j.combustflame.2021.02.031
34.
Bothien
,
M.
,
Ciani
,
A.
,
Wood
,
J.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
35.
Douglas
,
C. M.
,
Shaw
,
S. L.
,
Martz
,
T. D.
,
Steele
,
R. C.
,
Noble
,
D. R.
,
Emerson
,
B. L.
, and
Lieuwen
,
T. C.
,
2022
, “
Pollutant Emissions Reporting and Performance Considerations for Hydrogen–Hydrocarbon Fuels in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091003
.10.1115/1.4054949
36.
Ciani
,
A.
,
Wood
,
J. P.
,
Wickström
,
A.
,
Rørtveit
,
G. J.
,
Steeneveldt
,
R.
,
Pettersen
,
J.
,
Wortmann
,
N.
, and
Bothien
,
M. R.
,
2020
, “
Sequential Combustion in Ansaldo Energia Gas Turbines: The Technology Enabler for CO2-Free, Highly Efficient Power Production Based on Hydrogen
,”
ASME
Paper No. GT2020-14794.10.1115/GT2020-14794
37.
Mei
,
B.
,
Zhang
,
X.
,
Ma
,
S.
,
Cui
,
M.
,
Guo
,
H.
,
Cao
,
Z.
, and
Li
,
Y.
,
2019
, “
Experimental and Kinetic Modeling Investigation on the Laminar Flame Propagation of Ammonia Under Oxygen Enrichment and Elevated Pressure Conditions
,”
Combust. Flame
,
210
, pp.
236
246
.10.1016/j.combustflame.2019.08.033
You do not currently have access to this content.