Abstract

Wind turbine condition monitoring is considered a key task in the wind power industry. A plethora of methodologies based on machine learning have been proposed for monitoring wind turbines, but the absence of faulty data at the amount and the variety needed still set limitations. Therefore, anomaly detection (AD) methodologies are proposed as alternatives for fault detection. Deep learning tools have been introduced in the research field of wind turbine monitoring for the purpose of higher detection accuracy. In this work, a deep learning-based anomaly detection method, the deep support vector data description (deep SVDD), is proposed for the monitoring of wind turbines. Compared to the classic SVDD anomaly detection approach, this method combines a deep network, more specifically, a convolutional neural network, with the SVDD detector in order to automatically extract effective features. To test and validate the effectiveness of the proposed method, we apply the deep SVDD method to supervisory control and data Acquisition data from a real wind turbine use case, targeting the ice detection on wind turbine blades. The experimental results show that the method can effectively detect the generation of ice on wind turbines' blades with a successful detection rate of 91.45%.

References

1.
Andersen
,
P. D.
,
Bonou
,
A.
,
Beauson
,
J.
, and
Brøndsted
,
P.
,
2014
, “
Recycling of Wind Turbines
,”
DTU International Energy Report 2014
,
Technical University of Denmark
, Denmark, pp.
91
97
.
2.
Peng
,
D.
,
Liu
,
C.
,
Desmet
,
W.
, and
Gryllias
,
K.
,
2021
, “
An Improved 2DCNN With Focal Loss Function for Blade Icing Detection of Wind Turbines Under Imbalanced SCADA Data
,”
ASME
Paper No. IOWTC2021-3527.10.1115/IOWTC2021-3527
3.
Yang
,
W.
,
Court
,
R.
, and
Jiang
,
J.
,
2013
, “
Wind Turbine Condition Monitoring by the Approach of SCADA Data Analysis
,”
Renewable Energy
,
53
, pp.
365
376
.10.1016/j.renene.2012.11.030
4.
Pandit
,
R. K.
, and
Infield
,
D.
,
2018
, “
SCADA-Based Wind Turbine Anomaly Detection Using Gaussian Process Models for Wind Turbine Condition Monitoring Purposes
,”
IET Renewable Power Gener.
,
12
(
11
), pp.
1249
1255
.10.1049/iet-rpg.2018.0156
5.
Zaher
,
A. S. A. E.
,
McArthur
,
S. D. J.
,
Infield
,
D. G.
, and
Patel
,
Y.
,
2009
, “
Online Wind Turbine Fault Detection Through Automated SCADA Data Analysis
,”
Wind Energy: Int. J. Prog. Appl. Wind Power Convers. Technol.
,
12
(
6
), pp.
574
593
.10.1002/we.319
6.
Kim
,
K.
,
Parthasarathy
,
G.
,
Uluyol
,
O.
,
Foslien
,
W.
,
Sheng
,
S.
, and
Fleming
,
P.
,
2011
, “
Use of SCADA Data for Failure Detection in Wind Turbines
,”
Energy Sustainability
,
54686
, pp.
2071
2079
.10.1115/ES2011-54243
7.
Tian
,
J.
,
Azarian
,
M. H.
, and
Pecht
,
M.
,
2014
, “
Anomaly Detection Using Self-Organizing Maps-Based K-Nearest Neighbor Algorithm
,”
PHM Soc. Eur. Conf.
,
2
(
1
), pp.
1
9
.10.36001/phme.2014.v2i1.1554
8.
Li
,
K. L.
,
Huang
,
H. K.
,
Tian
,
S. F.
, and
Xu
,
W.
,
2003
, “
Improving One-Class SVM for Anomaly Detection
,”
Proceedings of the 2003 International Conference on Machine Learning and Cybernetics
, Xi'an, China, Nov. 5, pp.
3077
3081
.10.1109/ICMLC.2003.1260106
9.
Gryllias
,
K. C.
, and
Antoniadis
,
I. A.
,
2012
, “
A Support Vector Machine Approach Based on Physical Model Training for Rolling Element Bearing Fault Detection in Industrial Environments
,”
Eng. Appl. Artif. Intell.
,
25
(
2
), pp.
326
344
.10.1016/j.engappai.2011.09.010
10.
Naseer
,
S.
,
Saleem
,
Y.
,
Khalid
,
S.
,
Bashir
,
M. K.
,
Han
,
J.
,
Iqbal
,
M. M.
, and
Han
,
K.
,
2018
, “
Enhanced Network Anomaly Detection Based on Deep Neural Networks
,”
IEEE Access
,
6
, pp.
48231
48246
.10.1109/ACCESS.2018.2863036
11.
Kwon
,
D.
,
Kim
,
H.
,
Kim
,
J.
,
Suh
,
S. C.
,
Kim
,
I.
, and
Kim
,
K. J.
,
2019
, “
A Survey of Deep Learning-Based Network Anomaly Detection
,”
Cluster Comput.
,
22
(
S1
), pp.
949
961
.10.1007/s10586-017-1117-8
12.
Tax
,
D. M.
, and
Duin
,
R. P.
,
2004
, “
Support Vector Data Description
,”
Mach. Learn.
,
54
(
1
), pp.
45
66
.10.1023/B:MACH.0000008084.60811.49
13.
Liu
,
C.
, and
Gryllias
,
K.
,
2020
, “
A Semi-Supervised Support Vector Data Description-Based Fault Detection Method for Rolling Element Bearings Based on Cyclic Spectral Analysis
,”
Mech. Syst. Signal Process
,
140
, pp.
106682
106706
.10.1016/j.ymssp.2020.106682
14.
Ruff
,
L.
,
Vandermeulen
,
R.
,
Goernitz
,
N.
,
Deecke
,
L.
,
Siddiqui
,
S. A.
,
Binder
,
A.
, and
Kloft
,
M.
,
2018
, “
Deep One-Class Classification
,”
International Conference on Machine Learning
, Stockholm, Sweden, July 10–15, PMLR 80
, pp.
4393
4402
. https://proceedings.mlr.press/v80/ruff18a.html
15.
Kim
,
P.
,
2017
, “
Convolutional Neural Network
,”
MATLAB Deep Learning: Machine Learning, Neural Networks Artificial Intelligence
, Apress, Berkeley, CA, pp.
121
147
.
16.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.10.1038/nature14539
17.
Agarap
,
A. F.
,
2018
, “
Deep Learning Using Rectified Linear Units (Relu)
,” e-print
arXiv:1803.08375
.https://www.researchgate.net/publication/323956667_Deep_Learning_using_Rectified_Linear_Units_ReLU
18.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations, ICLR 2015
, San Diego, CA, May 7–9.https://dblp.org/rec/journals/corr/KingmaB14.html
19.
Peng
,
D.
,
Liu
,
C.
,
Desmet
,
W.
, and
Gryllias
,
K.
,
2021
, “
Deep Unsupervised Transfer Learning for Health Status Prediction of a Fleet of Wind Turbines With Unbalanced Data
,”
Annual Conference of the PHM Society
, Virtual, Nov. 29–Dec. 2,
13
(1).10.36001/phmconf.2021.v13i1.3069
20.
Liu
,
F. T.
,
Ting
,
K. M.
, and
Zhou
,
Z. H.
,
2008
, “
Isolation Forest
,”
2008 Eighth IEEE International Conference on Data Mining
, Pisa, Italy, Dec. 15–19, pp.
413
422
.10.1109/ICDM.2008.17
21.
Masci
,
J.
,
Meier
,
U.
,
Cireşan
,
D.
, and
Schmidhuber
,
J.
,
2011
, “
Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction
,”
Artificial Neural Networks and Machine Learning–ICANN 2011: 21st International Conference on Artificial Neural Networks
,
Espoo, Finland
, June 14–17, Proceedings, Part I,
Springer, Berlin, Heidelberg
, pp.
52
59
.10.1007/978-3-642-21735-7_7
You do not currently have access to this content.