Abstract

Resonant pulse combustors, one of the deflagration-based pressure gain combustion devices, can significantly increase thermal efficiency in gas turbine engines. This experimental study investigates the stability characteristics of a newly designed actively valved resonant pulse combustor, capable of sustained operation and meaningful stagnation pressure gain. The resonant pulse combustor was fired with liquid gasoline fuel while ion and pressure sensors captured the temporally resolved heat release and chamber pressure. First, experimental results were used to demonstrate the general operating principle of the combustor. Then, the stability characteristics of the device were investigated through frequency domain analysis of the ion probe and pressure signal traces. A low frequency oscillation (also observed in steady flames and passively valved resonant pulse combustors), was observed as the device was brought near to its blowout limit. Finally, an index was defined to predict the stability characteristics of the resonant pulse combustor by quantifying the competition between low frequency oscillations and combustion-driven resonance. Experimental results demonstrated the ability of this index to provide early prediction of a blowout event for this device.

References

1.
Geng
,
T.
,
Zheng
,
F.
,
Kuznetsov
,
A. V.
,
Roberts
,
W. L.
, and
Paxson
,
D. E.
,
2010
, “
Comparison Between Numerically Simulated and Experimentally Measured Flowfield Quantities Behind a Pulsejet
,”
Flow Turbul. Combust.
,
84
(
4
), pp.
653
667
.10.1007/s10494-010-9247-6
2.
Geng
,
T.
,
Zheng
,
F.
,
Kiker
,
A. P.
,
Kuznetsov
,
A. V.
, and
Roberts
,
W. L.
,
2007
, “
Experimental and Numerical Investigation of an 8-cm Valveless Pulsejet
,”
Exp. Therm. Fluid Sci.
,
31
(
7
), pp.
641
647
.10.1016/j.expthermflusci.2006.06.005
3.
Wilson
,
J.
,
Sgondea
,
A.
,
Paxson
,
D. E.
, and
Rosenthal
,
B. N.
,
2007
, “
Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube
,”
J. Propulsion Power
,
23
(
1
), pp.
108
115
.10.2514/1.19670
4.
Yungster
,
S.
,
Paxson
,
D. E.
, and
Perkins
,
H. D.
,
2017
, “
Numerical Investigation of Shrouded Ejector-Enhanced Pulse Combustor Performance at High Pressure
,”
J. Propul. Power
,
33
(
1
), pp.
29
42
.10.2514/1.B36082
5.
Anand
,
V.
,
Jodele
,
J.
,
Knight
,
E.
,
Prisell
,
E.
,
Lyrsell
,
O.
, and
Gutmark
,
E.
,
2018
, “
Dependence of Pressure, Combustion and Frequency Characteristics on Valved Pulsejet Combustor Geometries
,”
Flow Turbul. Combust.
,
100
(
3
), pp.
829
848
.10.1007/s10494-017-9875-1
6.
Anand
,
V.
,
Jodele
,
J.
,
Prisell
,
E.
,
Lyrsell
,
O.
, and
Gutmark
,
E.
,
2020
, “
Dynamic Features of Internal and External Flowfields of Pulsejet Engines
,”
AIAA J.
,
58
(
10
), pp.
4204
4211
.10.2514/1.J059685
7.
Anand
,
V.
,
Jodele
,
J.
,
Zahn
,
A.
,
Geller
,
A.
,
Prisell
,
E.
,
Lyrsell
,
O.
, and
Gutmark
,
E.
,
2019
, “
Revisiting the Argus Pulsejet Engine of V-1 Buzz Bombs: An Experimental Investigation of the First Mass-Produced Pressure Gain Combustion Device
,”
Exp. Therm. Fluid Sci.
,
109
, p.
109910
.10.1016/j.expthermflusci.2019.109910
8.
Blackburn
,
R. J.
, and
Miller
,
R. J.
,
2017
, “
The Rayleigh Efficiency of Pressure Gain Combustors
,”
J. Propul. Power
,
33
(
1
), pp.
51
61
.10.2514/1.B36073
9.
Miller
,
R. J.
, and
Heffer
,
J.
,
2013
,
Pressure Gain Combustion for Gas Turbines
,
Cambridge University
, Cambridge,
UK
.
10.
Meng
,
X.
,
de Jong
,
W.
, and
Kudra
,
T.
,
2016
, “
A State-of-the-Art Review of Pulse Combustion: Principles, Modeling, Applications and R&D Issues
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
73
114
.10.1016/j.rser.2015.10.110
11.
Putnam
,
A. A.
,
Belles
,
F. E.
, and
Kentfield
,
J. A. C.
,
1986
, “
Pulse Combustion
,”
Prog. Energy Combust. Sci.
,
12
(
1
), pp.
43
79
.10.1016/0360-1285(86)90013-4
12.
Stradomskii
,
M. V.
, and
Vasiliev
,
E. P.
,
1993
, “
Flame Radiation Characteristics in Pulsed Combustion of Liquid Motor Fuels in a Constant-Volume Combustion Chamber
,”
Exp. Therm. Fluid Sci.
,
7
(
1
), pp.
9
21
.10.1016/0894-1777(93)90076-U
13.
Zbicinski
,
I.
,
Benali
,
M.
, and
Kudra
,
T.
,
2002
, “
Pulse Combustion: An Advanced Technology for Efficient Drying
,”
Chem. Eng. Technol.
,
25
(
7
), pp.
687
691
.10.1002/1521-4125(20020709)25:7<687::AID-CEAT687>3.0.CO;2-#
14.
Kudra
,
T.
,
Benali
,
M.
, and
Zbicinski
,
I.
,
2003
, “
Pulse Combustion Drying: Aerodynamics, Heat Transfer, and Drying Kinetics
,”
Dry. Technol.
,
21
(
4
), pp.
629
655
.10.1081/DRT-120019056
15.
Lampinen
,
M. J.
,
Turunen
,
R.
, and
Köykkä
,
M.
,
1992
, “
Thermodynamic Analysis of a Pulse Combustion System and Its Application to Gas Turbines
,”
Int. J. Energy Res.
,
16
(
4
), pp.
259
276
.10.1002/er.4440160402
16.
Honkatukia
,
J.
,
Saari
,
E.
,
Knuuttila
,
T.
,
Larjola
,
J.
, and
Backman
,
J.
,
2012
, “
Feasibility of Pulse Combustion in Micro Gas Turbines
,”
J. Therm. Sci.
,
21
(
5
), pp.
466
473
.10.1007/s11630-012-0570-1
17.
Gadalla
,
M.
, and
Saghafifar
,
M.
,
2017
, “
Energy and Exergy Analyses of Pulse Combustor Integration in Air Bottoming Cycle Power Plants
,”
Appl. Therm. Eng.
,
121
, pp.
674
687
.10.1016/j.applthermaleng.2017.04.070
18.
Anand
,
V.
,
St George
,
A.
,
Knight
,
E.
, and
Gutmark
,
E.
,
2019
, “
Investigation of Pulse Detonation Combustors—Axial Turbine System
,”
Aerosp. Sci. Technol.
,
93
(
2019
), p.
105350
.10.1016/j.ast.2019.105350
19.
Xisto
,
C.
,
Petit
,
O.
,
Grönstedt
,
T.
,
Rolt
,
A.
,
Lundbladh
,
A.
, and
Paniagua
,
G.
,
2018
, “
The Efficiency of a Pulsed Detonation Combustor–Axial Turbine Integration
,”
Aerosp. Sci. Technol.
,
82
(
2018
), pp.
80
91
.10.1016/j.ast.2018.08.038
20.
Wang
,
Z.
,
Wang
,
Y.
,
Huang
,
J.
,
Qin
,
W.
,
Wei
,
L.
,
Liu
,
Z.
, and
Peng
,
C.
,
2021
, “
Back-Propagation Suppression Study Based on Intake Configuration Optimization for an Air-Breathing Pulse Detonation Engine
,”
Aerosp. Sci. Technol.
,
118
, p.
107042
.10.1016/j.ast.2021.107042
21.
Peng
,
H.-Y.
,
Liu
,
W.
,
Liu
,
S.
,
Zhang
,
H.
, and
Huang
,
S.
,
2020
, “
The Competitive Relationship Between Detonation and Deflagration in the Inner Cylinder-Variable Continuous Rotating Detonation Combustor
,”
Aerosp. Sci. Technol.
,
107
, p.
106263
.10.1016/j.ast.2020.106263
22.
Roy
,
G. D.
,
Frolov
,
S. M.
,
Borisov
,
A. A.
, and
Netzer
,
D. W.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.10.1016/j.pecs.2004.05.001
23.
Zinn
,
B. T.
,
1992
, “
Pulse Combustion: Recent Applications and Research Issues
,”
Symp. Combust. Proc.
, 24(1), pp.
1297
1305
.10.1016/S0082-0784(06)80151-7
24.
Keller
,
J. O.
,
Bramlette
,
T. T.
,
Dec
,
J. E.
, and
Westbrook
,
C. K.
,
1989
, “
Pulse Combustion: The Importance of Characteristic Times
,”
Combust. Flame
,
75
(
1
), pp.
33
44
.10.1016/0010-2180(89)90085-0
25.
Dawson
,
J. R.
,
Rodriguez-Martinez
,
V. M.
,
Beale
,
A. J.
, and
O'Doherty
,
T.
,
2005
, “
Pressure–Heat Release Measurements During Start-Up Conditions in a Pulse Combustor
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1815
1822
.10.1016/j.proci.2004.08.121
26.
Li
,
F.
,
Du
,
M.
, and
Yang
,
L.
,
2021
, “
Effect of Fuel Injection Parameters on Performance Characteristics and Emissions of a Thermoacoustic System
,”
Aerosp. Sci. Technol.
,
110
, p.
106512
.10.1016/j.ast.2021.106512
27.
Lee
,
J. H.
,
Dhar
,
B.
, and
Soedel
,
W.
,
1985
, “
A Mathematical Model of Low Amplitude Pulse Combustion Systems Using a Helmholtz Resonator-Type Approach
,”
J. Sound. Vib.
,
98
(
3
), pp.
379
401
.10.1016/0022-460X(85)90283-4
28.
McQuay
,
M. Q.
,
Dubey
,
R. K.
, and
Carvalho
,
J. A.
, Jr.
,
2000
, “
The Effect of Acoustic Mode on Time-Resolved Temperature Measurements in a Rijke-Tube Pulse Combustor
,”
Fuel
,
79
(
13
), pp.
1645
1655
.10.1016/S0016-2361(00)00027-2
29.
Kiran
,
D. Y.
, and
Mishra
,
D. P.
,
2007
, “
Experimental Studies of Flame Stability and Emission Characteristics of Simple LPG Jet Diffusion Flame
,”
Fuel
,
86
(
10–11
), pp.
1545
1551
.10.1016/j.fuel.2006.10.027
30.
Tangirala
,
V.
,
Chen
,
R. H.
, and
Driscoll
,
J. F.
,
1987
, “
Effect of Heat Release and Swirl on the Recirculation Within Swirl-Stabilized Flames
,”
Combust. Sci. Technol.
,
51
(
1–3
), pp.
75
95
.10.1080/00102208708960316
31.
Hariharan
,
V.
, and
Mishra
,
D. P.
,
2021
, “
Dynamic Flame Stability Diagnosis of Inverse Jet Flame Using CH* Chemiluminescence
,”
Fuel
,
285
, p.
119277
.10.1016/j.fuel.2020.119277
32.
Mahesh
,
S.
, and
Mishra
,
D. P.
,
2015
, “
Flame Stability Limits and Near Blowout Characteristics of CNG Inverse Jet Flame
,”
Fuel
,
153
, pp.
267
275
.10.1016/j.fuel.2015.02.074
33.
Okafor
,
E. C.
,
Yamashita
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K.
,
Kudo
,
T.
,
Tsujimura
,
T.
,
Uchida
,
M.
,
Ito
,
S.
, and
Kobayashi
,
H.
,
2021
, “
Flame Stability and Emissions Characteristics of Liquid Ammonia Spray co-Fired With Methane in a Single Stage Swirl Combustor
,”
Fuel
,
287
, p.
119433
.10.1016/j.fuel.2020.119433
34.
Wei
,
X.
,
Zhang
,
M.
,
An
,
Z.
,
Wang
,
J.
,
Huang
,
Z.
, and
Tan
,
H.
,
2021
, “
Large Eddy Simulation on Flame Topologies and the Blow-Off Characteristics of Ammonia/Air Flame in a Model Gas Turbine Combustor
,”
Fuel
,
298
, p.
120846
.10.1016/j.fuel.2021.120846
35.
Muruganandam
,
T. M.
,
Nair
,
S.
,
Scarborough
,
D.
,
Neumeier
,
Y.
,
Jagoda
,
J.
,
Lieuwen
,
T.
,
Seitzman
,
J.
, and
Zinn
,
B.
,
2005
, “
Active Control of Lean Blowout for Turbine Engine Combustors
,”
J. Propul. Power
,
21
(
5
), pp.
807
814
.10.2514/1.7254
36.
Yi
,
T.
, and
Gutmark
,
E.
,
2007
, “
Real-Time Prediction of Incipient Lean Blowout in Gas Turbine Combustors
,”
AIAA J.
,
45
(
7
), pp.
1734
1739
.10.2514/1.25847
37.
Nair
,
S.
, and
Lieuwen
,
T.
,
2005
, “
Acoustic Detection of Blowout in Premixed Flames
,”
J. Propul. Power
,
21
(
1
), pp.
32
39
.10.2514/1.5658
38.
Bompelly
,
R.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2009
, “
Lean Blowout and Its Sensing in the Presence of Combustion Dynamics in a Premixed Swirl Combustor
,”
AIAA
Paper No.
2009
982
.10.2514/6.2009-982
39.
Labarrere
,
L.
,
Poinsot
,
T.
,
Dauptain
,
A.
,
Duchaine
,
F.
,
Bellenoue
,
M.
, and
Boust
,
B.
,
2016
, “
Experimental and Numerical Study of Cyclic Variations in a Constant Volume Combustion Chamber
,”
Combust. Flame
,
172
, pp.
49
61
.10.1016/j.combustflame.2016.06.027
40.
Michalski
,
Q.
,
Kha
,
K.
,
Boust
,
B.
,
Robin
,
V.
,
Bellenoue
,
M.
, and
Mura
,
A.
,
2018
, “
Joint Numerical and Experimental Characterization of the Turbulent Reactive Flow Within a Constant Volume Vessel
,”
AIAA
Paper No.
2018
4964
.10.2514/6.2018-4964
41.
Michalski
,
Q.
,
Boust
,
B.
, and
Bellenoue
,
M.
,
2019
, “
Experimental Investigation of Ignition Stability in a Cyclic Constant-Volume Combustion Chamber Featuring Relevant Conditions for Air-Breathing Propulsion
,”
Flow Turbul. Combust.
,
102
(
2
), pp.
279
298
.10.1007/s10494-019-00015-1
42.
Michalski
,
Q.
,
Boust
,
B.
, and
Bellenoue
,
M.
,
2018
, “
Toward a Cyclic Self-Ignited Constant-Volume Combustion for Airbreathing Propulsion Applications
,”
AIAA
Paper No.
2018
4478
.10.2514/6.2018-4478
43.
Li
,
F.
,
Xu
,
L.
,
Du
,
M.
,
Yang
,
L.
, and
Cao
,
Z.
,
2017
, “
Ion Current Sensing-Based Lean Blowout Detection for a Pulse Combustor
,”
Combust. Flame
,
176
, pp.
263
271
.10.1016/j.combustflame.2016.10.017
44.
Li
,
F.
,
Cao
,
Z.
,
Xu
,
L.
, and
Xie
,
Y.
,
2018
, “
Prediction of Equivalence Ratio in Pulse Combustor From Ion Current Amplitude Spectrum
,”
Fuel
,
218
, pp.
179
187
.10.1016/j.fuel.2018.01.004
45.
Lisanti
,
J. C.
, and
Roberts
,
W. L.
,
2017
, “
Influence of Actively Controlled Heat Release Timing on the Performance and Operational Characteristics of a Rotary Valve, Acoustically Resonant Pulse Combustor
,”
AIAA
Paper No.
2017
1748
.10.2514/6.2017-1748
46.
Lisanti
,
J. C.
,
Zhu
,
X.
, and
Roberts
,
W. L.
,
2019
, “
Improving the Performance of an Active Valve Resonant Pulse Combustor
,”
AIAA
Paper No.
2019
3871
.10.2514/6.2019-3871
47.
Kumar
,
R.
, and
Kumar
,
S.
,
2021
, “
Formulation of a Three-Component Gasoline Surrogate Model Using Laminar Burning Velocity Data at Elevated Mixture Temperatures
,”
Fuel
,
306
, p.
121581
.10.1016/j.fuel.2021.121581
48.
Badra
,
J.
,
Farooq
,
A.
,
Sim
,
J.
,
Viollet
,
Y.
,
Im
,
H. G.
, and
Chang
,
J.
,
2016
, “
Effects of in-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion
,”
SAE
Paper No. 2016-01-0762.10.4271/2016-01-0762
49.
Fialkov
,
A. B.
,
1997
, “
Investigations on Ions in Flames
,”
Prog. Energy Combust. Sci.
,
23
(
5–6
), pp.
399
528
.10.1016/S0360-1285(97)00016-6
50.
Peerlings
,
L. B.
,
Kornilov
,
V. N.
,
de Goey
,
P.
, and
Manohar
,
2013
, “
Flame Ion Generation Rate as a Measure of the Flame Thermo-Acoustic Response
,”
Combust. Flame
,
160
(
11
), pp.
2490
2496
.10.1016/j.combustflame.2013.05.014
51.
Anand
,
V.
,
Jodele
,
J.
,
Shaw
,
V.
,
Russell
,
A.
,
Prisell
,
E.
,
Lyrsell
,
O.
, and
Gutmark
,
E.
,
2021
, “
Visualization of Valved Pulsejet Combustors and Evidence of Compression Ignition
,”
Flow Turbul. Combust.
,
106
(
3
), pp.
901
924
.10.1007/s10494-020-00203-4
52.
Yadav
,
H.
,
Agrawal
,
A.
, and
Srivastava
,
A.
,
2016
, “
Mixing and Entrainment Characteristics of a Pulse Jet
,”
Int. J. Heat Fluid Flow
,
61
, pp.
749
761
.10.1016/j.ijheatfluidflow.2016.08.006
53.
Lisanti
,
J. C.
,
Zhu
,
X.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2020
, “
Active Valve Resonant Pulse Combustor for Pressure Gain Combustion Applications
,”
J. Propuls. Power
, 38(2).10.2514/1.B38226
54.
Lu
,
F. K.
,
Miller
,
R.
,
Nalim
,
M. R.
, and
Yu
,
K. H.
,
2017
, “
Introduction: Special Section on Pressure Gain Combustion
,”
J. Propuls. Power
, 33(1), p.
16
.10.2514/1.B36585
55.
Zhao
,
D.
,
Gutmark
,
E.
, and
Reinecke
,
A.
,
2019
, “
Mitigating Self-Excited Flame Pulsating and Thermoacoustic Oscillations Using Perforated Liners
,”
Sci. Bull.
,
64
(
13
), pp.
941
952
.10.1016/j.scib.2019.05.004
You do not currently have access to this content.