Abstract

The integration of rotating machineries in human-populated environments requires to limit noise emissions, with multiple aspects impacting on control of amplitude and frequency of the acoustic signature. This is a key issue to address and when combined with compliance of minimum efficiency grades, further complicates the design of axial fans. The aim of this research is to assess the capability of unsupervised learning techniques in unveiling the mechanisms that concur to the sound generation process in axial fans starting from high-fidelity simulations. To this aim, a numerical dataset was generated by means of large Eddy simulation (LES) simulation of a low-speed axial fan. The dataset is enriched with sound source computed solving a-posteriori the perturbed convective wave equation (PCWE). First, the instantaneous flow features are associated with the sound sources through correlation matrices and then projected on latent basis to highlight the features with the highest importance. This analysis in also carried out on a reduced dataset, derived by considering two surfaces at 50% and 95% of the blade span. The sampled features on the surfaces are then exploited to train three cluster algorithms based on partitional, density and Gaussian criteria. The cluster algorithms are optimized and their results are compared, with the Gaussian Mixture one demonstrating the highest similarity (>80%). The derived clusters are analyzed, and the role of statistical distribution of velocity and pressure gradients is underlined. This suggests that design choices that affect these aspects may be beneficial to control the generation of noise sources.

References

1.
International Organization for Standardization,
2004
, Industrial Fans - Determination of the Sound Pressure Levels Under Standardized Laboratory Conditions - 2, DIN ISO Standard No. 133347(en).
2.
Corsini
,
A.
,
Delibra
,
G.
, and
Sheard
,
A. G.
,
2013
, “
On the Role of Leading-Edge Bumps in the Control of Stall Onset in Axial Fan Blades
,”
ASME J. Fluids Eng.
,
135
(
8
), p. 081104.10.1115/1.4024115
3.
Wright
,
T.
, and
Simmons
,
W. E.
,
1990
, “
Blade Sweep for Low-Speed Axial Fans
,”
ASME J. Turbomach.
,
112
, pp.
151
158
.10.1115/1.2927413
4.
Krömer
,
F.
,
Czwielong
,
F.
, and
Becker
,
S.
,
2019
, “
Experimental Investigation of the Sound Emission of Skewed Axial Fans With Leading-Edge Serrations
,”
AIAA J.
,
57
(
12
), pp.
5182
5196
.10.2514/1.J058134
5.
Ocker
,
C.
,
Geyer
,
T. F.
,
Czwielong
,
F.
,
Krömer
,
F.
,
Pannert
,
W.
,
Merkel
,
M.
, and
Becker
,
S.
,
2021
, “
Permeable Leading Edges for Airfoil and Fan Noise Reduction in Disturbed Inflow
,”
AIAA J.
,
59
(
12
), pp.
4969
4986
.10.2514/1.J060396
6.
Schoder
,
S.
, and
Kaltenbacher
,
M.
,
2019
, “
Hybrid Aeroacoustic Computations: State of Art and New Achievements
,”
J. Theor. Comput. Acoust.
,
27
(
4
), p.
1950020
.10.1142/S2591728519500208
7.
Sandberg
,
R. D.
, and
Tester
,
B. J.
,
2016
, “
Mach-Number Scaling of Individual Azimuthal Modes of Subsonic Co-Flowing Jets
,”
J. Fluid Mech.
,
793
, pp.
209
228
.10.1017/jfm.2016.133
8.
Paliath
,
U.
,
Hao
,
S.
,
Ravikanth
,
A.
,
Chingwei
,
S.
,
2011
, “
Large Eddy Simulation for Jets From Chevron and Dual Flow Nozzles
,”
AIAA
Paper No. 2011-2881.10.2514/6.2011-2881
9.
Ffowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
,
1969
, “
Sound Generated by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc., A
,
264
, pp.
321
–3
42
.10.1098/rsta.1969.0031
10.
Naqavi
,
I. Z.
,
Wang
,
Z.-N.
,
Tucker
,
P. G.
,
Mahak
,
M.
, and
Strange
,
P.
,
2016
, “
Far-Field Noise Prediction for Jets Using Large-Eddy Simulation and Ffowcs Williams-Hawkings Method
,”
Int. J. Aeroacoust.
,
15
(
8
), pp.
757
780
.10.1177/1475472X16672547
11.
Lighthill
,
M. J.
,
1952
, “
On Sound Generated Aerodynamically. I. General Theory, Proceedings of the Royal Society of London
,”
Series A, Mathematical and Physical Sciences
,
211
(
1107
), pp.
564
587
.10.1098/rspa.1952.0060
12.
Zhou
,
B. Y.
,
Gauger
,
N. R.
,
Hauth
,
J.
,
Huan
,
X.
,
Morelli
,
M.
, and
Guardone
,
A.
,
2019
, “
Towards Real-Time In-Flight Ice Detection Systems Via Computational Aeroacoustics and Machine Learning
,”
AIAA
Paper No. 2019-3103.10.2514/6.2019-3103
13.
Tenney
,
A. S.
,
2019
, “Modern Methods in Machine Learning as Applied to the Study of a Complex Supersonic Jet Flow,” Doctoral dissertation,
Syracuse University
, Syracuse, NY.
14.
Thurman
,
C. S.
,
2021
,“
Aeroacoustic Characterization of Optimum Hovering Rotors Using Artificial Neural Networks
,”
VFS 77th Annual Forum
, Virtual, May 10–14.https://www.researchgate.net/publication/354471084_Aeroacoustic_Characterization_of_Optimum_Hovering_Rotors_using_Artificial_Neural_Networks
15.
McKee
,
C.
,
Harmanto
,
D.
, and
Whitbrook
,
A.
,
2018
, “
A Conceptual Framework for Combining Artificial Neural Networks With Computational Aeroacoustics for Design Development
,”
Proceedings of the International Conference on Industrial Engineering and Operations Management
, Bandung, Indonesia, Mar. 6–8, p.
165
.https://www.researchgate.net/publication/323187401_A_Conceptual_Framework_for_Combining_Artificial_Neural_Networks_with_Computational_Aeroacoustics
16.
Goudarzi
,
A.
,
SPehr
,
C.
, and
Herbold
,
S.
,
2021
, “
Expert Decision Support System for Aeroacoustic Classification
,” preprint
arXiv:2103.00255
.https://www.researchgate.net/publication/359810304_Expert_decision_support_system_for_aeroacoustic_classification
17.
Schoder
,
S.
,
Junger
,
C.
, and
Kaltenbacher
,
M.
,
2020
, “
Computational Aeroacoustics of the EAA Benchmark Case of an Axial Fan
,”
Acta Acust.
,
4
(
5
), p.
22
.10.1051/aacus/2020021
18.
Siemens 2020, Siemens Industries Digital Software, Simcenter STAR-CCM+, Version 2020.1.
19.
Zenger
,
F.
,
Junger
,
C.
,
Kaltenbacher
,
M.
, and
Becker
,
S.
,
2016
, “
A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan
,”
SAE
Paper No. 2016-01-1805.10.4271/2016-01-1805
20.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
7
), pp.
1510
1520
.10.1063/1.858424
21.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
22.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.10.1016/j.ijheatfluidflow.2006.02.006
23.
Zenger
,
F. J.
,
Renz
,
A.
,
Becher
,
M.
, and
Becker
,
S.
,
2016
, “
Experimental Investigation of the Noise Emission of Axial Fans Under Distorted Inflow Conditions
,”
J. Sound Vib.
,
383
, pp.
124
145
.10.1016/j.jsv.2016.07.035
24.
Czwielong
,
F.
,
Krömer
,
F.
, and
Becker
,
S.
,
2019
, “
Experimental Investigations of the Sound Emission of Axial Fans Under the Influence of Suction-Side Heat Exchangers
,”
25th AIAA/CEAS Aeroacoustics Conference
, In (p.
2618
).
25.
Krömer
,
F. J.
,
2018
,
Sound Emission of Low-Pressure Axial Fans Under Distorted Inflow Conditions
,
FAU University Press
, Boca Raton, FL.
26.
International Organization for Standardization,
2017
, Fans - Performance Testing Using Standardized Airways, DIN ISO Standard No. 5801(en).
27.
Hüppe
,
A.
,
Grabinger
,
J.
,
Kaltenbacher
,
M.
,
Reppenhagen
,
A.
, and
Kühnel
,
W.
,
2014
, “
A Non-Conforming Finite Element Method for Computational Aeroacoustics in Rotating Systems
,”
AIAA
Paper No. 2014-2739.10.2514/6.2014-2739
28.
Kaltenbacher
,
M.
, ed.,
2018
,
Computational Acoustics
,
Springer International Publishing
,
Cham, Switzerland
.
29.
Tieghi
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
, and
Tucci
,
F. A.
,
2021
, “
A Machine-Learnt Wall Function for Rotating Diffusers
,”
ASME J. Turbomach.
,
143
(
8
), p.
081012
.10.1115/1.4050442
30.
Jolliffe
,
I.
,
2005
, “
Principal component analysis
,”
Encyclopedia Statistics Behavioral Science
,
John Wiley and Sons Ltd
.,
New York
.
31.
Xu
,
D.
, and
Tian
,
Y.
,
2015
, “
A Comprehensive Survey of Clustering Algorithms
,”
Ann. Data Sci.
,
2
(
2
), pp.
165
193
.10.1007/s40745-015-0040-1
32.
Sculley
,
D.
,
2010
, “
Web-Scale k-Means Clustering
,”
Proceedings of the 19th International Conference on World Wide Web
, Raleigh, NC, Apr. 26–30, pp.
1177
1178
.10.1145/1772690.1772862
33.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Research
,
12
, pp.
2825
2830
.10.48550/arXiv.1201.0490
34.
Yang
,
M. S.
,
Lai
,
C. Y.
, and
Lin
,
C. Y.
,
2012
, “
A Robust EM Clustering Algorithm for Gaussian Mixture Models
,”
Pattern Recognit.
,
45
(
11
), pp.
3950
3961
.10.1016/j.patcog.2012.04.031
35.
Campello
,
R. J.
,
Moulavi
,
D.
, and
Sander
,
J.
,
2013
, “
Density-Based Clustering Based on Hierarchical Density Estimates
,”
Pacific-Asia Conference on Knowledge Discovery and Data Mining
,
Springer
,
Berlin, Heidelberg
, pp.
160
172
.
36.
McInnes
,
L.
,
Healy
,
J.
, and
Astels
,
S.
,
2017
, “
Hdbscan: Hierarchical Density Based Clustering
,”
J. Open Source Software
,
2
(
11
), p.
205
.10.21105/joss.00205
37.
Pearson
,
K.
,
1895
,
Notes on Regression and Inheritance in the Case of Two Parents Proc. R. Soc. London
,
58
, pp.
240
242
.
38.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2001
,
The Elements of Statistical Learning
(Springer Series in Statistics),
Springer
,
New York
.
39.
Chan
,
D. M.
,
Rao
,
R.
,
Huang
,
F.
, and
Canny
,
J. F.
,
2019
, “
GPU Accelerated t-Distributed Stochastic Neighbor Embedding
,”
J. Parallel Distrib. Comput.
,
131
, pp.
1
13
.10.1016/j.jpdc.2019.04.008
40.
Wang
,
Z.
,
Bovik
,
A. C.
,
Sheikh
,
H. R.
, and
Simoncelli
,
E. P.
,
2004
, “
04-01). "Image Quality Assessment: From Error Visibility to Structural Similarity
,”
IEEE Trans. Image Process.
,
13
(
4
), pp.
600
612
.10.1109/TIP.2003.819861
You do not currently have access to this content.