Abstract

The majority of lifetime models associate the failure of thermal barrier coatings (TBCs) to oxidation of the bond coat (BC). A thickening of the thermally grown oxide (TGO) leads to a conversion of stresses at the undulated ceramic-metal interface, supporting the propagation of existing microcracks. However, in plasma-sprayed multilayer TBCs consisting of gadolinium zirconate (GZO) and yttria-stabilized zirconia (YSZ) a shift of the failure site from the ceramic-metal interface to the GZO-YSZ interface has been observed. Thus, an exclusively oxide-based formulation is not sufficient to describe the damage transition phenomena. Therefore, this paper outlines a mechanism-based approach for assessing the structural integrity, considering all relevant thermally activated processes as well as the interaction between thermal and elastic misfits. Oxidation of BC, creep of composite materials and sintering of ceramics are modeled in terms of temperature and exposure time. Finite element analysis of GZO-YSZ pairings with different microstructures reveal a strong influence of the initial porosities on the sintering behavior and thus on the resulting mechanical stresses and potential crack driving forces at the bimaterial interfaces.

References

1.
Clarke
,
D. R.
,
Oechsner
,
M.
, and
Padture
,
N. P.
,
2012
, “
Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines
,”
MRS Bull.
,
37
(
10
), pp.
891
898
.10.1557/mrs.2012.232
2.
Darolia
,
R.
,
2013
, “
Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects
,”
Int. Mater. Rev.
,
58
(
6
), pp.
315
348
.10.1179/1743280413Y.0000000019
3.
Vassen
,
R.
,
Cao
,
X.
,
Tietz
,
F.
,
Basu
,
D.
, and
Stöver
,
D.
,
2004
, “
Zirconates as New Materials for Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
83
(
8
), pp.
2023
2028
.10.1111/j.1151-2916.2000.tb01506.x
4.
Vaßen
,
R.
,
Jarligo
,
M. O.
,
Steinke
,
T.
,
Mack
,
D. E.
, and
Stöver
,
D.
,
2010
, “
Overview on Advanced Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
205
(
4
), pp.
938
942
.10.1016/j.surfcoat.2010.08.151
5.
Subramanian
,
M. A.
,
Aravamudan
,
G.
, and
Subba Rao
,
G. V.
,
1983
, “
Oxide Pyrochlores — a Review
,”
Prog. Solid State Chem.
,
15
(
2
), pp.
55
143
.10.1016/0079-6786(83)90001-8
6.
van Dijk
,
M. P.
,
de Vries
,
K. J.
, and
Burggraaf
,
A. J.
,
1983
, “
Oxygen Ion and Mixed Conductivity in Compounds With the Fluorite and Pyrochlore Structure
,”
Solid State Ionics
,
9–10
, pp.
913
919
.10.1016/0167-2738(83)90110-8
7.
Schlichting
,
K. W.
,
Padture
,
N. P.
, and
Klemens
,
P. G.
,
2001
, “
Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia
,”
J. Mater. Sci.
,
36
(
12
), pp.
3003
3010
.10.1023/A:1017970924312
8.
Vassen
,
R.
,
Stuke
,
A.
, and
Stöver
,
D.
,
2009
, “
Recent Developments in the Field of Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
18
(
2
), pp.
181
186
.10.1007/s11666-009-9312-7
9.
Vaßen
,
R.
,
2004
, “
Entwicklung neuer oxidischer Wärmedämmschichten für Anwendungen in stationären und Flug-Gasturbinen
,”
Schriften des Forschungszentrums Jülich, Reihe Energietechnik/Energy Technology
,
33
,
Forschungszentrum Jülich GmbH
,
Jülich, Germany
.
10.
Mahade
,
S.
,
Curry
,
N.
,
Björklund
,
S.
,
Markocsan
,
N.
, and
Nylén
,
P.
,
2016
, “
Failure Analysis of Gd2Zr2O7/YSZ Multi-Layered Thermal Barrier Coatings Subjected to Thermal Cyclic Fatigue
,”
J. Alloys Compd.
,
689
, pp.
1011
1019
.10.1016/j.jallcom.2016.07.333
11.
Mahade
,
S.
,
Curry
,
N.
,
Björklund
,
S.
,
Markocsan
,
N.
, and
Joshi
,
S.
,
2019
, “
Durability of Gadolinium Zirconate/YSZ Double-Layered Thermal Barrier Coatings Under Different Thermal Cyclic Test Conditions
,”
Materials
,
12
(
14
), pp.
2238
14
.10.3390/ma12142238
12.
Bakan
,
E.
,
Mack
,
D. E.
,
Mauer
,
G.
,
Mücke
,
R.
, and
Vaßen
,
R.
,
2015
, “
Porosity–Property Relationships of Plasma–Sprayed Gd2Zr2O7/YSZ Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
98
(
8
), pp.
2647
2654
.10.1111/jace.13611
13.
Adam
,
M.
,
Oechsner
,
M.
,
Rudolphi
,
M.
,
Galetz
,
M.
,
Koch
,
D.
, and
Vaßen
,
R.
,
2018
, “
Entwicklung eines mechanismen-basierten Lebensdauermodells für Bi-Layer Wärmedämmschichtsysteme, Teil I und Teil II (Vorhaben Nr. 1108 Und Nr. 1195)
,” Forschungsvereinigung für Verbrennungskraftmaschinen e. V., Frankfurt am Main, Germany, Report No. 1164/2018.
14.
Frommherz
,
M.
,
Scholz
,
A.
,
Oechsner
,
M.
,
Bakan
,
E.
, and
Vaßen
,
R.
,
2016
, “
Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Mixed-Mode Interfacial Fracture Toughness and Sintering Behavior
,”
Surf. Coat. Technol.
,
286
, pp.
119
128
.10.1016/j.surfcoat.2015.12.012
15.
Adam
,
M.
,
2021
, “
Ein mechanismenbasiertes Konzept zur Bewertung der Strukturintegrität keramischer Multilagen-Wärmedämmschichten
,” Ph.D. thesis,
Technical University of Darmstadt
,
Darmstadt, Germany
.
16.
Heinecke
,
B.
,
2004
, “
Schädigung von Wärmedämmschichtsystemen mit unterschiedlichen Haftvermittlerschichten unter zyklischer Beanspruchung
,”
Berichte aus der Werkstofftechnik
, 4/2004,
Shaker Verlag
,
Aachen, Germany
.
17.
Quadakkers
,
W. J.
,
Naumenko
,
D.
,
Wessel
,
E.
,
Kochubey
,
V.
, and
Singheiser
,
L.
,
2004
, “
Growth Rates of Alumina Scales on Fe–Cr–Al Alloys
,”
Oxid. Met.
,
61
(
1/2
), pp.
17
37
.10.1023/B:OXID.0000016274.78642.ae
18.
Naumenko
,
D.
,
Gleeson
,
B.
,
Wessel
,
E.
,
Singheiser
,
L.
, and
Quadakkers
,
W. J.
,
2007
, “
Correlation Between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy
,”
Metall. Mater. Trans. A
,
38
(
12
), pp.
2974
2983
.10.1007/s11661-007-9342-z
19.
Busso
,
E. P.
,
Lin
,
J.
,
Sakurai
,
S.
, and
Nakayama
,
M.
,
2001
, “
A Mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System. Part I: Model Formulation
,”
Acta Mater.
,
49
(
9
), pp.
1515
1528
.10.1016/S1359-6454(01)00060-X
20.
Vaßen
,
R.
,
Giesen
,
S.
, and
Stöver
,
D.
,
2009
, “
Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results
,”
J. Therm. Spray Technol.
,
18
(
5–6
), pp.
835
845
.10.1007/s11666-009-9389-z
21.
Paul
,
S.
,
2010
, “
Assessing Coating Reliability Through Pore Architecture Evaluation
,”
J. Therm. Spray Technol.
,
19
(
4
), pp.
779
786
.10.1007/s11666-010-9474-3
22.
Nielsen
,
L. F.
,
1984
, “
Elasticity and Damping of Porous Materials and Impregnated Materials
,”
J. Am. Ceram. Soc.
,
67
(
2
), pp.
93
98
.10.1111/j.1151-2916.1984.tb09622.x
23.
Adams
,
J. W.
,
Ruh
,
R.
, and
Mazdiyasni
,
K. S.
,
2005
, “
Young's Modulus, Flexural Strength, and Fracture of Yttria-Stabilized Zirconia Versus Temperature
,”
J. Am. Ceram. Soc.
,
80
(
4
), pp.
903
908
.10.1111/j.1151-2916.1997.tb02920.x
24.
Shimamura
,
K.
,
Arima
,
T.
,
Idemitsu
,
K.
, and
Inagaki
,
Y.
,
2007
, “
Thermophysical Properties of Rare-Earth-Stabilized Zirconia and Zirconate Pyrochlores as Surrogates for Actinide-Doped Zirconia
,”
Int. J. Thermophys.
,
28
(
3
), pp.
1074
1084
.10.1007/s10765-007-0232-9
25.
Pan
,
W.
,
Wan
,
C. L.
,
Xu
,
Q.
,
Wang
,
J. D.
, and
Qu
,
Z. X.
,
2007
, “
Thermal Diffusivity of Samarium–Gadolinium Zirconate Solid Solutions
,”
Thermochim. Acta
,
455
(
1–2
), pp.
16
20
.10.1016/j.tca.2006.12.001
26.
Kachanov
,
M.
,
Tsukrov
,
I.
, and
Shafiro
,
B.
,
1994
, “
Effective Moduli of Solids With Cavities of Various Shapes
,”
Appl. Mech. Rev.
,
47
(
1S
), pp.
S151
S174
.10.1115/1.3122810
27.
Ahmadian
,
S.
,
Thistle
,
C.
, and
Jordan
,
E. H.
,
2013
, “
Experimental and Finite Element Study of an Air Plasma Sprayed Thermal Barrier Coating Under Fixed Cycle Duration at Various Temperatures
,”
J. Am. Ceram. Soc.
,
96
(
10
), pp.
3210
3217
.10.1111/jace.12552
28.
Hermann
,
W.
,
Sockel
,
H. G.
,
Han
,
J.
, and
Bertram
,
A.
,
1996
, “
Elastic Properties and Determination of Elastic Constants of Nickel-Base Superalloys by a Free-Free Beam Technique
,”
Superalloys 1996
,
R. D.
Kissinger
,
D. J.
Deye
,
D. L.
Anton
,
A. D.
Cetel
,
M. V.
Nathal
,
T. M.
Pollock
, and
D. A.
Woodford
, eds.,
TMS the Minerals Metals & Materials Society
,
Warrendale, PA
, pp.
229
238
.
29.
Karunaratne
,
M. S. A.
,
Kyaw
,
S.
,
Jones
,
A.
,
Morrell
,
R.
, and
Thomson
,
R. C.
,
2016
, “
Modelling the Coefficient of Thermal Expansion in Ni-Based Superalloys and Bond Coatings
,”
J. Mater. Sci.
,
51
(
9
), pp.
4213
4226
.10.1007/s10853-015-9554-3
30.
Bednarz
,
P.
,
2007
, “
Finite Element Simulation of Stress Evolution in Thermal Barrier Coating Systems
,”
Schriften des Forschungszentrums Jülich, Reihe Energietechnik/Energy Technology
,
60
,
Forschungszentrum Jülich GmbH
,
Jülich, Germany
.
31.
Munro
,
R. G.
,
2005
, “
Evaluated Material Properties for a Sintered Alpha-Alumina
,”
J. Am. Ceram. Soc.
,
80
(
8
), pp.
1919
1928
.10.1111/j.1151-2916.1997.tb03074.x
32.
Oechsner
,
M.
,
2001
, “
Ein Beitrag zur Lebensdauervorhersage von keramischen Wärmedämmschichten
,”
Fortschritt-Berichte VDI, Reihe 18, Mechanik/Bruchmechanik, Nr. 263
,
VDI Verlag
,
Düsseldorf, Germany
.
33.
Bakan
,
E.
, and
Vaßen
,
R.
,
2017
, “
Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties
,”
J. Therm. Spray Technol.
,
26
(
6
), pp.
992
1010
.10.1007/s11666-017-0597-7
34.
Caruso
,
R.
,
Mamana
,
N.
, and
Benavidez
,
E.
,
2010
, “
Densification Kinetics of ZrO2-Based Ceramics Using a Master Sintering Curve
,”
J. Alloys Compd.
,
495
(
2
), pp.
570
573
.10.1016/j.jallcom.2009.11.080
You do not currently have access to this content.