Abstract

This paper focuses on the thermodynamic performance and techno-economic assessment of a novel electrical energy storage technology using carbon dioxide as a working fluid. This technology, named CO2 battery and recently patented by Energy Dome SpA., addresses an energy market which has a great need for energy storage solutions able to handle the increasing share of nondispatchable renewable energy sources like photovoltaic and wind energy. After a brief introduction, the present study presents the concept of CO2 batteries and their operation. Then the detailed numerical model developed for the accurate calculation of system round trip efficiency is presented with the adopted assumptions and the optimization routine description. Results on the reference case and following sensitivity analysis confirm a round trip efficiency of around 77% (±2%) which makes CO2 batteries a very promising technology with respect to other energy storage systems based on thermodynamic cycles like compressed air and liquid air energy storage thanks to the high performance and the easiness of installation. Finally, calculation of system footprint, capital investment cost and levelized cost of storage are discussed.

References

1.
International Renewable Energy Agency
,
2020
,
Renewable Power Generation Costs in 2019
,
International Renewable Energy Agency
, Abu Dhabi, UAE.
2.
British Petroleum
,
2020
,
Statistical Review of World Energy 2020
, 69th ed.,
British Petroleum
, London, UK.
3.
IEA-ETSAP and IRENA
,
2015
,
Technology Brief E15—Renewable Energy Integration in Power Grids
,
IEA-ETSAP and IRENA
, Abu Dhabi, UAE.
4.
Redondo-Iglesias
,
E.
,
Venet
,
P.
, and
Pelissier
,
S.
,
2019
, “
Efficiency Degradation Model of Lithium-Ion Batteries for Electric Vehicles
,”
IEEE Trans. Ind. Appl.
,
55
(
2
), pp.
1932
1940
.10.1109/TIA.2018.2877166
5.
Schimpe
,
M.
,
Naumann
,
M.
,
Truong
,
N.
,
Hesse
,
H. C.
,
Santhanagopalan
,
S.
,
Saxon
,
A.
, and
Jossen
,
A.
,
2018
, “
Energy Efficiency Evaluation of a Stationary Lithium-Ion Battery Container Storage System Via Electro-Thermal Modeling and Detailed Component Analysis
,”
Appl. Energy
,
210
, pp.
211
229
.10.1016/j.apenergy.2017.10.129
6.
Smith
,
K.
,
Keyser
,
A. S. M.
,
Lundstrom
,
B.
,
Cao
,
Z.
, and
Roc
,
A.
,
2017
, “
Life Prediction Model for Grid-Connected Li-Ion Battery Energy Storage System
,”
2017 American Control Conference
, Seattle, WA, May 24–26, pp.
4062
4068
.10.23919/ACC.2017.7963578
7.
Samir Succar
,
R. H. W.
,
2008
,
Compressed Air Energy Storage: Theory, Resources, and Applications for Wind Power
,
Princeton Environmental Institute
, Princeto, NJ.
8.
Raju
,
M.
, and
Kumar Khaitan
,
S.
,
2012
, “
Modeling and Simulation of Compressed Air Storage in Caverns: A Case Study of the Huntorf Plant
,”
Appl. Energy
,
89
(
1
), pp.
474
481
.10.1016/j.apenergy.2011.08.019
9.
Astolfi
,
M.
,
Guandalini
,
G.
,
Belloli
,
M.
,
Hirn
,
A.
,
Silva
,
P.
, and
Campanari
,
S.
,
2020
, “
Preliminary Design and Performance Assessment of an Underwater Compressed Air Energy Storage System for Wind Power Balancing
,”
ASME. J. Eng. Gas Turbines Power
, 142(9), p. 091001.10.1115/1.4047375
10.
Crotogino
,
F.
,
Mohmeyer
,
K.-U.
, and
Scharf
,
R.
,
2001
, “
Huntorf CAES: More Than 20 Years of Successful Operation
,” Solution Mining Research Institute (
SMRI
) Spring Meeting, Orlando, FL, Apr. 23–24, pp.
351
362
.https://www.researchgate.net/publication/233530432_Huntorf_CAES_More_than_20_Years_of_Successful_Operation
11.
ESA Energy Storage Association
, 2022, “Compressed Air Energy Storage (CAES),” ESA Energy Storage Association, Washington, DC, accessed June 24, 2022, https://energystorage.org/why-energy-storage/technologies/compressed-air-energy-storage-caes/
12.
Guizzi
,
G. L.
,
Manno
,
M.
,
Tolomei
,
L. M.
, and
Vitali
,
R. M.
,
2015
, “
Thermodynamic Analysis of a Liquid Air Energy Storage System
,”
Energy
,
93
(
2
), pp.
1639
1647
.10.1016/j.energy.2015.10.030
13.
Highview Power, 2022, “Cryogenic Energy Storage,” Highview Power, Alexandria, VA, accessed June 24, 2022, https://highviewpower.com/technology/
14.
Energy Storage Association, 2022, “Hydrogen Energy Storage,” Energy Storage Association, Washington, DC, accessed June 24, 2022, https://energystorage.org/why-energy-storage/technologies/hydrogen-energy-storage/
15.
McTigue
,
J. D.
,
White
,
A. J.
, and
Markides
,
C. N.
,
2015
, “
Parametric Studies and Optimisation of Pumped Thermal Electricity Storage
,”
Appl. Energy
,
137
, pp.
800
811
.10.1016/j.apenergy.2014.08.039
16.
Eppinger
,
B.
,
Zigan
,
L.
,
Karl
,
J.
, and
Will
,
S.
,
2020
, “
Pumped Thermal Energy Storage With Heat Pump-ORC-Systems: Comparison of Latent and Sensible Thermal Storages for Various Fluids
,”
Appl. Energy
,
280
, p.
115940
.10.1016/j.apenergy.2020.115940
17.
Smallbone
,
A.
,
Jülch
,
V.
,
Wardle
,
R.
, and
Roskilly
,
A. P.
,
2017
, “
Levelised Cost of Storage for Pumped Heat Energy Storage in Comparison With Other Energy Storage Technologies
,”
Energy Convers. Manage.
,
152
, pp.
221
228
.10.1016/j.enconman.2017.09.047
18.
MALTA Inc.,
2022, “
Malta's Electro-Thermal Energy Storage System
,” MALTA Inc., Cambridge, MA, accessed June 24, 2022, https://www.maltainc.com/
19.
Liu
,
H.
,
He
,
Q.
,
Borgia
,
A.
,
Pan
,
L.
, and
Oldenburg
,
C. M.
,
2016
, “
Thermodynamic Analysis of a Compressed Carbon Dioxide Energy Storage System Using Two Saline Aquifers at Different Depths as Storage Reservoirs
,”
Energy Convers. Manage.
,
127
, pp.
149
159
.10.1016/j.enconman.2016.08.096
20.
Ayachi
,
F.
,
Tauveron
,
N.
,
Tartière
,
T.
,
Colasson
,
S.
, and
Nguyen
,
D.
,
2016
, “
Thermo-Electric Energy Storage Involving CO2 Transcritical Cycles and Ground Heat Storage
,”
Appl. Therm. Eng.
,
108
, pp.
1418
1428
.10.1016/j.applthermaleng.2016.07.063
21.
McTigue
,
J.
,
Farres-Antunez
,
P.
,
Ellingwood
,
K.
,
Neises
,
T.
, and
White
,
A.
,
2019
,
Pumped Thermal Electricity Storage With Supercritical CO2 Cycles and Solar Heat Input
,
NREL
, Denver, CO.
22.
Energy Dome
, 2022, “Groundbreaking Long Duration Energy Storage,” Energy Dome, Milano, Italy, accessed June 24, 2022, https://energydome.it/
23.
Lemmon
,
E.
,
Bell
,
I.
,
Huber
,
M.
, and
McLinden
,
M.
,
2018
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Standard Reference Data Program
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
24.
Alfani
,
D.
,
Astolfi
,
M.
,
Binotti
,
M.
, and
Silva
,
P.
,
2020
, “
Part Load Strategy Definition and Annual Simulation for Small Size sCO2 Based Pulverized Coal Power Plant
,”
ASME
Paper No. GT2020-15541
.10.1115/GT2020-15541
25.
Brosseau
,
D. A.
,
Hlava
,
P. F.
, and
Kelly
,
M. J.
,
2014
,
Testing Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems Used in Parabolic Trough Solar Power Plants
,
Sandia National Laboratories
, Albuquerque, NM.
26.
Hoffmann
,
J.-F.
,
Fasquelle
,
T.
,
Goetz
,
V.
, and
Py
,
X.
,
2016
, “
A Thermocline Thermal Energy Storage System With Filler Materials for Concentrated Solar Power Plants: Experimental Data and Numerical Model Sensitivity to Different Experimental Tank Scales
,”
Appl. Therm. Eng.
,
100
, pp.
753
761
.10.1016/j.applthermaleng.2016.01.110
27.
Jemmal
,
Y.
,
Zari
,
N.
, and
Maaroufi
,
M.
,
2017
, “
Experimental Characterization of Siliceous Rocks to Be Used as Filler Materials for Air-Rock Packed Beds Thermal Energy Storage Systems in Concentrated Solar Power Plants
,”
Sol. Energy Mater. Sol. Cells
,
171
, pp.
33
42
.10.1016/j.solmat.2017.06.026
28.
Duratherm, 2022, “Duratherm HF—Technical Data Sheet,” Duratherm, Tonowanda, NY, accessed June 24, 2022, https://durathermfluids.com/it/products/duratherm-hf/
29.
SQM, 2022, “Thermo-Solar Salts,” SQM, Online, accessed June 24, 2022, https://www.sqm.com/wp-content/uploads/2018/05/Solar-salts-Book-eng.pdf
30.
Binotti
,
M.
,
Astolfi
,
M.
,
Campanari
,
S.
,
Manzolini
,
G.
, and
Silva
,
P.
,
2017
, “
Preliminary Assessment of sCO2 Cycles for Power Generation in CSP Solar Tower Plants
,”
Appl. Energy
,
204
, pp.
1007
1017
.10.1016/j.apenergy.2017.05.121
31.
Reay
,
D.
,
Ramshaw
,
C.
, and
Harvey
,
A.
,
2008
, “
Chapter 4—Compact and Micro-Heat Exchangers
,”
Process Intensification: Engineering for Efficiency, Sustainability and Flexibility
, Butterworth-Heinemann Elsevier, Oxford, UK, pp.
77
101
.10.1016/B978-0-7506-8941-0.00005-5
32.
Loh
,
H.
,
Lyons
,
J.
, and
White
,
C. W.
,
2002
,
Process Equipment Cost Estimation
,
U.S. Department of Energy, National Energy Technology Laboratory
, Pittsburgh, PA.
33.
Solarthermalworld, 2022, “Seasonal Pit Heat Storage: Cost Benchmark of 30 EUR/m³,” Solarthermalworld, Online, accessed June 24, 2022, https://www.solarthermalworld.org/news/seasonal-pit-heat-storage-cost-benchmark-30-eurm3
34.
Forecast International
, 2010,
The Market for Gas Turbine Marine Engines 2010–2019
, Forecast International, Newtown, CT.
35.
McGrail
,
B.
,
Cabe
,
J.
,
Davidson
,
C.
,
Knudsen
,
F.
,
Bacon
,
D.
,
Bearden
,
M.
,
Chamness
,
M.
,
Horner
,
J.
,
Reidel
,
S.
,
Schaef
,
H.
,
Spane
,
F.
, and
Thorne
,
P.
, 2013,
Techno-Economic Performance Evaluation of Compressed Air Energy Storage in the Pacific Northwest
, U.S. Deparment of Energy and Pacific NorthWest National Laboratory, Oak Ridge, TN.
36.
Viswanathan
,
V.
,
Kintner-Meyer
,
M.
,
Balducci
,
P.
, and
Jin
,
C.
,
National Assessment of Energy Storage for Grid Balancing and Arbitrage Phase II, Volume 2: Cost and Performance Characterization
,
U.S. Department of Energy, Pacific Northwest National Laboratory
, Richland, WA.
37.
Zakeri
,
B.
, and
Syri
,
S.
,
2015
, “
Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
569
596
.10.1016/j.rser.2014.10.011
You do not currently have access to this content.