Abstract

During the last decades, several new technologies were investigated in order to reduce the pollutant emissions and increase the overall engine efficiency. Unluckily, some of them including the lean direct injection spray combustion hinder the ignition performances of the combustor. Moreover, several expensive tests under very challenging operating conditions must be carried out to obtain the required certifications and assess the combustor behavior with respect to the ignition process. Therefore, a deeper knowledge of the phenomena involved in the flame onset is mandatory to shorten the design process and achieve the required performances from the very beginning. In the last years, computational fluid dynamics (CFD) simulations established a valid alternative to the experiments to investigate the complex phenomena involved in the ignition process. In fact, several examples are available in scientific literature about the use of simulations to predict the development of the flame starting from an initial kernel. In particular, large eddy simulation (LES) proved to be a reliable tool to uncover new mechanisms of ignition and flame stabilization in gas turbines. In this work, two reactive LES of the ignition process were attempted using ansysfluent 2019R1, with the aim of testing the thickened flame model already implemented in the solver. In fact, compared to the previous versions, a new formulation for the efficiency function based on the pioneering work of Colin was made available. Such promising tool was validated against some detailed experimental results of a lean swirled flame, known as knowledge for ignition, acoustics and instabilities (KIAI)-CORIA spray flame. At first, a non-reactive and reactive LES were carried out to validate the cold field and the stabilized flame structure respectively. Finally, two ignition simulations were performed, from initial spark deposition up to flame stabilization or kernel quenching. All the obtained results have been extensively compared against the available experimental data showing that the employed simulation setup is fairly capable of describing the phenomena involved in the rig ignition.

References

1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, CRC Press, Boca Raton, FL.
2.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
3.
Mastorakos
,
E.
,
2017
, “
Forced Ignition of Turbulent Spray Flames
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2367
2383
.10.1016/j.proci.2016.08.044
4.
Jones
,
W. P.
, and
Tyliszczak
,
A.
,
2010
, “
Large Eddy Simulation of Spark Ignition in a Gas Turbine Combustor
,”
Flow, Turbul. Combust.
,
85
(
3–4
), pp.
711
734
.10.1007/s10494-010-9289-9
5.
Collin-Bastiani
,
F.
,
Marrero-Santiago
,
J.
,
Riber
,
E.
,
Cabot
,
G.
,
Renou
,
B.
, and
Cuenot
,
B.
,
2019
, “
A Joint Experimental and Numerical Study of Ignition in a Spray Burner
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5047
5055
.10.1016/j.proci.2018.05.132
6.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Berat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1–2
), pp.
2
22
.10.1016/j.combustflame.2008.02.006
7.
Lancien
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
, and
Vicquelin
,
R.
,
2018
, “
Large Eddy Simulation of Light-Round in an Annular Combustor With Liquid Spray Injection and Comparison With Experiments
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p. 021504. 10.1115/1.4037827
8.
Neophytou
,
A.
,
Cuenot
,
B.
, and
Duchaine
,
P.
,
2016
, “
Large-Eddy Simulation of Ignition and Flame Propagation in a Trisector Combustor
,”
J. Propul. Power
,
32
(
2
), pp.
345
359
.10.2514/1.B35792
9.
Masquelet
,
M. M.
,
Cao
,
S.
, and
Pai
,
M.
,
2016
, “
Ignition and Flame Propagation in a Liquid-Fueled Swirling Combustor
,”
AIAA
Paper No. 2016-4687.10.2514/6.2016-4687
10.
Fossi
,
A.
,
DeChamplain
,
A.
,
Akih-Kumgeh
,
B.
, and
Bergthorson
,
J.
,
2021
, “
Large Eddy Simulation of an Ignition Sequence and the Resulting Steady Combustion in a Swirl-Stabilized Combustor Using FGM-Based Tabulated Chemistry
,”
Int. J. Numer. Methods Heat Fluid Flow
,
31
(
6
), pp.
1857
1883
.10.1108/HFF-03-2020-0136
11.
Sforzo
,
B.
,
Kim
,
J.
,
Jagoda
,
J.
, and
Seitzman
,
J.
,
2015
, “
Ignition Probability in a Stratified Turbulent Flow With a Sunken Fire Igniter
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p. 011502.10.1115/1.4028208
12.
Sforzo
,
B.
, and
Seitzman
,
J.
,
2017
, “
Modeling Ignition Probability for Stratified Flows
,”
J. Propul. Power
,
33
(
5
), pp.
1294
1304
.10.2514/1.B36413
13.
Neophytou
,
A.
,
Richardson
,
E. S.
, and
Mastorakos
,
E.
,
2012
, “
Spark Ignition of Turbulent Recirculating Non-Premixed Gas and Spray Flames: A Model for Predicting Ignition Probability
,”
Combust. Flame
,
159
(
4
), pp.
1503
1522
.10.1016/j.combustflame.2011.12.015
14.
Ivancic
,
P.
,
Luke
,
E.
,
Hassan
,
E. A.
,
Ombrello
,
T.
, and
Peterson
,
D. M.
,
2020
, “
Predicting Ignition Probability Using a Backwards-Time Integration Scheme
,”
AIAA
Paper No. 2020-0649.10.2514/6.2020-0649
15.
Esclapez
,
L.
,
Collin-Bastiani
,
F.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2021
, “
A Statistical Model to Predict Ignition Probability
,”
Combust. Flame
,
225
, pp.
180
195
.10.1016/j.combustflame.2020.10.051
16.
Cordier
,
M.
,
Vandel
,
A.
,
Cabot
,
G.
,
Renou
,
B.
, and
Boukhalfa
,
A. M.
,
2013
, “
Laser-Induced Spark Ignition of Premixed Confined Swirled Flames
,”
Combust. Sci. Technol.
,
185
(
3
), pp.
379
407
. mar10.1080/00102202.2012.725791
17.
Marrero-Santiago
,
J.
,
Verdier
,
A.
,
Brunet
,
C.
,
Vandel
,
A.
,
Godard
,
G.
,
Cabot
,
G.
,
Boukhalfa
,
M.
, and
Renou
,
B.
,
2018
, “
Experimental Study of Aeronautical Ignition in a Swirled Confined Jet-Spray Burner
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p. 021502.10.1115/1.4037752
18.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
19.
Lefebvre
,
H.
, and
McDonell
,
G.
,
2017
,
Atomization and Sprays
, 2nd ed., CRC Press, Boca Raton, FL.
20.
Shum-Kivan
,
F.
,
2017
, “
Simulation aux grandes echelles de flammes de spray
et modélisation de la combustion non-prémlangée,” Ph.D. thesis,
Université de Toulouse
, Toulouse, FR.
21.
Spalding
,
D. B.
,
1953
, “
The Combustion of Liquid Fuels
,”
Symp. (Int.) Combust.
,
4
(
1
), pp.
847
864
.10.1016/S0082-0784(53)80110-4
22.
Abramzon
,
B.
, and
Sirignano
,
W.
,
1988
, “
Droplet Vaporization Model for Spray Combustion Calculations
,” 32(9), pp. 1605–1618.10.2514/6.1988-636
23.
O'Rourke
,
P. J.
, and
Bracco
,
F. V.
,
1979
, “
Two Scaling Transformations for the Numerical Computation of Multidimensional Unsteady Laminar Flames
,”
J. Comput. Phys.
,
33
(
2
), pp.
185
203
.10.1016/0021-9991(79)90015-9
24.
Williams
,
F.
,
1965
,
Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems
(Addison-Wesley Series in Engineering Science),
Addison-Wesley Publishing Company
, Menlo Park, CA.
25.
Veynante
,
D.
, and
Poinsot
,
T.
,
1997
, “
Large Eddy Simulation of Combustion Instabilities in Turbulent Premixed Burners
,”
Cent. Turbul. Res. Annu. Res. Briefs
, pp.
253
275
.https://web.stanford.edu/group/ctr/ResBriefs97/veynante.pdf
26.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
27.
Legier
,
J. P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of Summer Program, Centre for Turbulence Research
, Stanford, CA, Vol. 12, pp. 157–168.https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf
28.
Paulhiac
,
D.
,
2015
, “
Modélisation de la combustion d'un spray dans un bruleur aéronautique,” Ph.D.
thesis,
Université de Toulouse
, Toulouse, FR.
29.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene–Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.10.1016/j.combustflame.2010.03.014
30.
Lacaze
,
G.
,
Richardson
,
E.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Spark Ignition in a Turbulent Methane Jet
,”
Combust. Flame
,
156
(
10
), pp.
1993
2009
.10.1016/j.combustflame.2009.05.006
31.
Merrero-Santiago
,
J.
,
2018
, “
Experimental Study of Lean Aeronautical Ignition. Impact of Critical Parameters on the Mechanisms Acting Along the Different Ignition Phases,” Ph.D.
thesis,
Université de Toulouse
, Toulouse, FR.
32.
ANSYS
,
2019
,
ANSYS Fluent 2019R1 Theory Guide
,
ANSYS
, Canonsburg, PA.
33.
Marrero-Santiago
,
J.
,
Collin-Bastiani
,
F.
,
Riber
,
E.
,
Cabot
,
G.
,
Cuenot
,
B.
, and
Renou
,
B.
,
2020
, “
On the Mechanisms of Flame Kernel Extinction or Survival During Aeronautical Ignition Sequences: Experimental and Numerical Analysis
,”
Combust. Flame
,
222
, pp.
70
84
.10.1016/j.combustflame.2020.08.021
You do not currently have access to this content.