Abstract

Waste heat recovery through cycle humidification is considered as an effective tool to increase the operational flexibility of micro gas turbines (mGTs) in cogeneration in a decentralized energy system (DES) context. Indeed, during periods with low heat demand, the excess thermal power can be reintroduced in the cycle under the form of heated water/steam, leading to improved electrical performance. The micro humid air turbine (mHAT) has been proven to be the most effective route for cycle humidification; however, so far, all research efforts focused on optimizing the mHAT performance at nominal electrical load, in the absence of any thermal load. Nevertheless, in a DES context, the thermal and electrical load of the mGT need to be changed depending on the demand, requiring both optimal nominal and part load performances. To address this need, in this paper, we present the first step toward the development of a control strategy for a Turbec T100 mGT-mHAT test rig. First, using experimental data, the global performance, depending on the operating point as well as the humidity level, has been assessed. Second, the performance of the saturation tower, i.e., the degree of saturation (relative humidity) of the working fluid leaving this saturator, is analyzed to assess the optimal water injection system control parameter settings. Results show that optimal mHAT performance can only be obtained when the working fluid leaving the saturation tower is fully saturated, but does not contain a remaining liquid fraction. Under these conditions, a maximal amount of waste heat is transferred from the water to the mGT working fluid in the saturation tower. From these data, some general observations can be made to optimize the performance, being maximizing injection pressure and aiming for a water flow rate of 5m3/h. Besides these general recommendations, having a specific control matrix, that allows setting the saturation tower control parameters for any set of operational setpoint and the inlet conditions would lead to optimized performance. Therefore, future work involves the development of a control matrix, using advanced data postprocessing for noise reduction and accuracy improvement, as well as an experimental validation of this methodology on the actual test rig.

References

1.
Pappa
,
A.
,
Bricteux
,
L.
,
Bénard
,
P.
, and
De Paepe
,
W.
,
2021
, “
Can Water Dilution Avoid Flashback on a Hydrogen-Enriched Micro-Gas Turbine Combustion?—A Large Eddy Simulations Study
,”
ASME. J. Eng. Gas Turbines Power
,
143
(
4
), p.
041008
.10.1115/1.4049798
2.
Renzi
,
M.
,
Patuzzi
,
F.
, and
Baratieri
,
M.
,
2017
, “
Syngas Feed of Micro Gas Turbines With Steam Injection: Effects on Performance, Combustion and Pollutants Formation
,”
Appl. Energy
,
206
, pp.
697
707
.10.1016/j.apenergy.2017.08.214
3.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2018
, “
Towards Higher Micro Gas Turbine Efficiency and Flexibility—Humidified mGTs: A Review
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081702
.10.1115/1.4038365
4.
Stathopoulos
,
P.
, and
Paschereit
,
C.
,
2015
, “
Retrofitting Micro Gas Turbines for Wet Operation. A Way to Increase Operational Flexibility in Distributed CHP Plants
,”
Appl. Energy
,
154
, pp.
438
446
.10.1016/j.apenergy.2015.05.034
5.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Bram
,
S.
,
Musin
,
F.
,
Parente
,
A.
, and
Contino
,
F.
,
2016
, “
Humidified Micro Gas Turbines for Domestic Users: An Economic and Primary Energy Savings Analysis
,”
Energy
,
117
(
2
), pp.
429
438
.10.1016/j.energy.2016.04.024
6.
Jonsson
,
M.
, and
Yan
,
J.
,
2005
, “
Humidified Gas Turbines – A Review of Proposed and Implemented Cycles
,”
Energy
,
30
(
7
), pp.
1013
1078
.10.1016/j.energy.2004.08.005
7.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Contino
,
F.
, and
Parente
,
A.
,
2017
, “
Waste Heat Recovery Optimization in Micro Gas Turbine Applications Using Advanced Humidified Gas Turbine Cycle Concepts
,”
Appl. Energy
,
207
, pp.
218
229
.10.1016/j.apenergy.2017.06.001
8.
Parente
,
J.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2003
, “
Micro Humid Air Cycle: Part A – Thermodynamic and Technical Aspects
,”
ASME
Paper No. GT2003-38326.10.1115/GT2003-38326
9.
Rao
,
A. D.
,
1989
, “
Process for Producing Power
,” U.S. Patent No. 4829763.
10.
De Paepe
,
W.
,
Contino
,
F.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2014
, “
Optimal Waste Heat Recovery in Micro Gas Turbine Cycles Through Liquid Water Injection
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
846
856
.10.1016/j.applthermaleng.2014.05.089
11.
MosayebNezhad
,
M.
,
Mehr
,
A.
,
Lanzini
,
A.
,
Misul
,
D.
, and
Santarelli
,
M.
,
2019
, “
Technology Review and Thermodynamic Performance Study of a Biogas-Fed Micro Humid Air Turbine
,”
Renewable Energy
,
140
, pp.
407
418
.10.1016/j.renene.2019.03.064
12.
Xu
,
Z.
,
Lu
,
Y.
,
Wang
,
B.
,
Zhao
,
L.
,
Chen
,
C.
, and
Xiao
,
Y.
,
2019
, “
Experimental Evaluation of 100 kW Grade Micro Humid Air Turbine Cycles Converted From a Microturbine
,”
Energy
,
175
, pp.
687
693
.10.1016/j.energy.2019.03.036
13.
Xu
,
Z.
,
Xie
,
Y.
, and
Zhang
,
F.
,
2018
, “
Development of Mass Transfer Coefficient Correlation for a Ceramic Foam Packing Humidifier at Elevated Pressure
,”
Appl. Therm. Eng.
,
133
, pp.
560
565
.10.1016/j.applthermaleng.2018.01.092
14.
Xu
,
Z.
,
Xiao
,
Y.
, and
Wang
,
Y.
,
2007
, “
Experimental and Theoretical Studies on Air Humidification by a Water Spray at Elevated Pressure
,”
Appl. Therm. Eng.
,
27
(
14–15
), pp.
2549
2558
.10.1016/j.applthermaleng.2007.01.032
15.
De Paepe
,
W.
,
Contino
,
F.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2014
, “
New Concept of Spray Saturation Tower for Micro Humid Air Turbine Applications
,”
Appl. Energy
,
130
, pp.
723
737
.10.1016/j.apenergy.2014.03.055
16.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Magnusson
,
J.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2017
, “
Experimental Characterisation of a Micro Humid Air Turbine: Assessment of the Thermodynamic Performance
,”
Appl. Therm. Eng.
,
118
, pp.
796
806
.10.1016/j.applthermaleng.2017.03.017
17.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2013
, “
Water Injection in a Micro Gas Turbine – Assessment of the Performance Using a Black Box Method
,”
Appl. Energy
,
112
, pp.
1291
1302
.10.1016/j.apenergy.2012.11.006
18.
Wang
,
Y.
,
Zhang
,
Q.
,
Li
,
Y.
,
He
,
M.
, and
Weng
,
S.
,
2022
, “
Research on the Effectiveness of the Key Components in the Hat Cycle
,”
Appl. Energy
,
306
, p.
118066
.10.1016/j.apenergy.2021.118066
19.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2017
, “
Does Humidification Improve the Micro Gas Turbine Cycle? Thermodynamic Assessment Based on Sankey and Grassmann Diagrams
,”
Appl. Energy
,
204
, pp.
1163
1171
.10.1016/j.apenergy.2017.05.067
20.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
, and
Contino
,
F.
,
2014
, “
T100 Micro Gas Turbine Converted to Full Humid Air Operation: Test Rig Evaluation
,”
ASME
Paper No. GT2014-26123.10.1115/GT2014-26123
21.
Turbec AB
,
2000
–2001, T100 Microturbine CHP System: Technical Description ver 4.0, Turbec AB, Malmö, Sweden.
22.
De Paepe
,
W.
,
Pappa
,
A.
,
Coppitters
,
D.
,
Montero Carrero
,
M.
,
Tsirikoglou
,
P.
, and
Contino
,
F.
,
2021
, “
Recuperator Performance Assessment in Humidified Micro Gas Turbine Applications Using Experimental Data Extended With Preliminary Support Vector Regression Model Analysis
,”
ASME. J. Eng. Gas Turbines Power
, 143(7), p. 071030.10.1115/1.4049266
23.
PNR
,
2012
, General Purpose Spray Nozzles: CTG UG20 BR,
PNR
,
Groot-Bijgaarden, Belgium
, accessed Sept. 9, 2014, http://www.pnr.eu/catalogo_sfoglia/general-purpose-nozzle/full_cone_nozzles.pdf
24.
Wang
,
Y.
,
Li
,
Y.
,
Weng
,
S.
, and
Su
,
M.
,
2007
, “
Experimental Investigation on Humidifying Performance of Counter Flow Spray Saturator for Humid Air Turbine Cycle
,”
Energy Convers. Manage.
,
48
(
3
), pp.
756
763
.10.1016/j.enconman.2006.09.005
25.
Montero Carrero
,
M.
,
Ferrari
,
M. L.
,
De Paepe
,
W.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2015
, “
Transient Simulations of a T100 Micro Gas Turbine Converted Into a Micro Humid Air Turbine
,”
ASME
Paper No. GT2015-43277.10.1115/GT2015-43277
26.
Pedemonte
,
A.
,
Traverso
,
A.
, and
Massardo
,
A.
,
2008
, “
Experimental Analysis of Pressurised Humidification Tower for Humid Air Gas Turbine Cycles. Part A: Experimental Campaign
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1711
1725
.10.1016/j.applthermaleng.2007.10.030
27.
Lee
,
J. J.
,
Jeon
,
M. S.
, and
Kim
,
T. S.
,
2010
, “
The Influence of Water and Steam Injection on the Performance of a Recuperated Cycle Microturbine for Combined Heat and Power Application
,”
Appl. Energy
,
87
(
4
), pp.
1307
1316
.10.1016/j.apenergy.2009.07.012
28.
De Paepe
,
W.
,
Renzi
,
M.
,
Montero Carrerro
,
M.
,
Caligiuri
,
C.
, and
Contino
,
F.
,
2019
, “
Micro Gas Turbine Cycle Humidification for Increased Flexibility: Numerical and Experimental Validation of Different Steam Injection Models
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021009
.10.1115/1.4040859
29.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Giorgetti
,
S.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2016
, “
Exhaust Gas Recirculation on Humidified Flexible Micro Gas Turbines for Carbon Capture Applications
,”
ASME
Paper No. GT2016-57265.10.1115/GT2016-57265
You do not currently have access to this content.