Abstract

Buoyancy-induced flow occurs inside the rotating compressor cavities of gas turbines. These cavities are usually open at the inner radius, but in some industrial gas turbines, they are effectively closed. This paper presents measurements of the disk heat transfer and rotating flow structures in a closed cavity over a wide range of engine relevant conditions. These experimentally derived distributions of disk temperature and heat flux are the first of their kind to be published. The radial distribution of the nondimensional disk temperature virtually collapsed onto a single curve over the full experimental range. There was a small, monotonic departure from this common curve with increasing Reynolds number; this was attributed to compressibility effects where the core temperature increases as the rotational speed increases. These results imply that, if compressibility effects are negligible, all rotating closed cavities should have a disk temperature distribution uniquely related to the geometry and disk material; this is of important practical use to the engine designer. Unsteady pressure sensors detected either three or four vortex pairs across the experimental range. The number of pairs changed with Grashof number, and the structures slipped relative to the rotating disks by less than 1% of the disk speed.

References

1.
Siemens Energy, Inc.,
2020
, “
Cross-Section of the SGT6-4000F (V84.3A) Gas Turbine,” Siemens Energy, Inc., Orlando, FL,
accessed Nov. 26, 2016, https://bit.ly/2J1Yez7
2.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.10.1115/1.2927991
3.
Jackson
,
R.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2020
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
, 143(6), p. 061004.10.1115/1.4049100
4.
Owen
,
J. M.
,
2010
, “
Thermodynamic Analysis of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
132
(
3
), p.
031006
.10.1115/1.2988170
5.
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1985
, “
Source-Sink Flow Inside a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
155
, pp.
233
265
.10.1017/S0022112085001793
6.
Jackson
,
R.
,
Tang
,
H.
,
Pountney
,
O.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Analysis of Shroud and Disc Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
, 143(9), p. 091005.10.1115/1.4050631
7.
Jackson
,
R.
,
Tang
,
H.
,
Pountney
,
O.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Unsteady Pressure Measurements in a Heated Rotating Cavity
,”
ASME
Paper No. GT2021-59090.10.1115/GT2021-59090
8.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J. M.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Disks
,”
ASME J. Turbomach.
,
137
(
12
), p.
121003
.10.1115/1.4031355
9.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(
1
), pp.
175
183
.10.1115/1.2835635
10.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.10.1115/1.4031039
11.
Tang
,
H.
, and
Owen
,
J. M.
,
2018
, “
Theoretical Model of Buoyancy-Induced Heat Transfer in Closed Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032605
.10.1115/1.4037926
12.
Sun
,
Z.
,
Kifoil
,
A.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2004
, “
Numerical Simulation of Natural Convection in Stationary and Rotating Cavities
,”
ASME
Paper No. GT2004-53528.10.1115/GT2004-53528
13.
King
,
M. P.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2007
, “
Rayleigh-Benard Convection in Open and Closed Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
305
311
.10.1115/1.2432898
14.
Holland
,
K. G. T.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1975
, “
Correlation Equations for Free Convection Heat Transfer in Horizontal Layers of Air and Water
,”
Int. J. Heat Mass Transfer
,
18
(
7–8
), pp.
879
884
.10.1016/0017-9310(75)90179-9
15.
Grossmann
,
S.
, and
Lohse
,
D.
,
2000
, “
Scaling in Thermal Convection: A Unifying Theory
,”
J. Fluid Mech.
,
407
, pp.
27
56
.10.1017/S0022112099007545
16.
Pitz
,
D. B.
,
Chew
,
J. W.
,
Marxen
,
O.
, and
Hills
,
N. J.
,
2017a
, “
Direct Numerical Simulation of Rotating Cavity Flows Using a Spectral Element-Fourier Method
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072602
.10.1115/1.4035593
17.
Pitz
,
D. B.
,
Marxen
,
O.
, and
Chew
,
J. W.
,
2017b
, “
Onset of Convection Induced by Centrifugal Buoyancy in a Rotating Cavity
,”
J. Fluid Mech.
,
826
, pp.
484
502
.10.1017/jfm.2017.451
18.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Large-Eddy Simulation of Buoyancy-Induced Flow in a Sealed Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021020
.10.1115/1.4041113
19.
Saini
,
D.
,
Cheung
,
D.
, and
Sandberg
,
R.
,
2018
, “
Direct Numerical Simulations of Centrifugal Buoyancy Induced Flow in a Closed Rotating Cavity
,”
21st Australasian Fluid Mechanics Conference
, Adelaide, Australia, Dec. 10–13.https://www.researchgate.net/publication/331630290_Direct_Numerical_Simulations_of_Centrifugal_Buoyancy_Induced_Flow_in_a_Closed_Rotating_Cavity
20.
Gao
,
F.
,
Pitz
,
D. B.
, and
Chew
,
J. W.
,
2020
, “
Numerical Investigation of Buoyancy-Induced Flow in a Sealed Rapidly Rotating Disc Cavity
,”
Int. J. Heat Mass Transfer
,
147
, p.
118860
.10.1016/j.ijheatmasstransfer.2019.118860
21.
Bohn
,
D.
, and
Gier
,
J.
,
1998
, “
The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli for Different Rayleigh Numbers
,”
ASME
Paper No. 98-GT-542.10.1115/98-GT-542
22.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2020
, “
Simulations of Compressibility Effects in Centrifugal Buoyancy-Induced Flow in a Closed Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
85
, p.
108656
.10.1016/j.ijheatfluidflow.2020.108656
23.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R.
,
Tang
,
H.
,
Pountney
,
O.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2020
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
, 143(4), p.
041030
.10.1115/1.4048601
24.
Pountney
,
O.
,
Patinios
,
M.
,
Tang
,
H.
,
Luberti
,
D.
,
Sangan
,
C.
,
Scobie
,
J.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Calibration of Thermopile Heat Flux Gauges Using a Physically-Based Equation
,”
J. Power Energy
, 235(7), pp.
1806
1816
.10.1177/0957650920982103
25.
Tang
,
H.
, and
Owen
,
J. M.
,
2021
, “
Effect of Radiation on Heat Transfer Inside Aeroengine Compressor Rotors
,”
ASME J. Turbomach.
, 143(5), p.
051005
.10.1115/1.4050114
26.
Owen
,
J. M.
, and
Tang
,
H.
,
2015
, “
Theoretical Model of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111005
.10.1115/1.4031353
You do not currently have access to this content.