Abstract

This work presents an on-design component-level multiple-objective optimization of a small-scaled uncooled cavity-stabilized combustor. Optimization is performed at the maximum power condition of the engine thermodynamic cycle. The computational fluid dynamics simulations are managed by a supervised machine learning algorithm to divide a continuous and deterministic design space into nondominated Pareto frontier and dominated design points. Steady, compressible three-dimensional simulations are performed using a multiphase realizable k–ε RANS and nonadiabatic flamelet/progress variable combustion model. Conjugate heat transfer through the combustor liner is also considered. There are fifteen geometrical input parameters and four objective functions viz., maximization of combustion efficiency, and minimization of total pressure losses, pattern factor, and critical liner area factor. The baseline combustor design is based on engineering guidelines developed over the past two decades. The small-scale baseline design performs remarkably well. Direct optimization calculations are performed on this baseline design. In terms of Pareto optimality, the baseline design remains in the Pareto frontier throughout the optimization. However, the optimization calculations show improvement from an initial design point population to later iteration design points. The optimization calculations report other nondominated designs in the Pareto frontier. The Euclidean distance from design points to the Utopic point is used to select a “best” and “worst” design point for future fabrication and experimentation. The methodology to perform computational fluid dynamics optimization calculations of a small-scale uncooled combustor is expected to be useful for guiding the design and development of future gas turbine combustors.

References

1.
Briones
,
A. M.
,
Burrus
,
D. L.
,
Sykes
,
J. P.
,
Rankin
,
B. A.
, and
Caswell
,
A. W.
,
2018
, “
Automated Design Optimization of a Small-Scale High-Swirl Cavity-Stabilized Combustor
,”
ASME
Paper No. GT2018-76900.10.1115/GT2018-76900
2.
Briones
,
A. M.
,
Burrus
,
D. L.
,
Sykes
,
J. P.
,
Rankin
,
B. A.
, and
Caswell
,
A. W.
,
2018
, “
Automated Design Optimization of a Small-Scale High-Swirl Cavity-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121509
.10.1115/1.4040821
3.
Thomas
,
N.
,
Rumpfkeil
,
M. P.
,
Briones
,
A. M.
,
Erdmann
,
T. J.
, and
Rankin
,
B. A.
,
2019
, “
Multiple-Objective Optimization of a Small-Scale Cavity-Stabilized Combustor
,”
AIAA
Paper No. 2019-0990.10.2514/6.2019-0988
4.
Briones
,
A. M.
,
Rumpfkeil
,
M. P.
,
Thomas
,
N.
, and
Rankin
,
B. A.
,
2019
, “
Effect of Deterministic and Continuous Design Space Resolution on Multiple-Objective Combustor Optimization
,”
ASME
Paper No. GT2019-91388.10.1115/GT2019-91388
5.
Briones
,
A. M.
,
Thomas
,
N. R.
, and
Rankin
,
B. A.
,
2020
, “
LES-Verified Rans-Based Deterministic and Continuous Multiple-Objective Combustor Design Optimization
,”
ASME
Paper No. GT2020-14034.10.1115/GT2020-14034
6.
Briones
,
A. M.
,
Erdmann
,
T. J.
, and
Rankin
,
B. A.
,
2020
, “
Effects of Combustor Enclosure Flow Path on Combustor Design
,”
ASME
Paper No. GT2020-14127.10.1115/GT2020-14127
7.
Thornburg
,
H.
,
Sekar
,
B.
, and
Briones
,
A.
,
2011
, “
Enhanced Mixing in Trapped Vortex Combustor With Protuberances Part 1: Single-Phase Nonreacting Flow
,”
AIAA
Paper No.
2011
3421
.10.2514/6.2011-3421
8.
Briones
,
A.
,
Balu
,
S.
, and
Thornburg
,
H.
,
2011
, “
Enhanced Mixing in Trapped Vortex Combustor With Protuberances Part 2: Two-Phase Reacting Flow
,”
AIAA
Paper No.
2011
3422
.10.2514/6.2011-3422
9.
Zhao
,
D.
,
Gutmark
,
E.
, and
de Goey
,
F.
,
2018
, “
A Review of Cavity-Based Trapped Vortex, Ultra-Compact, High-g, Inter-Turbine Combustors
,”
Prog. Energy Combust. Sci.
,
66
, pp.
42
82
.10.1016/j.pecs.2017.12.001
10.
Hsu
,
K.-Y.
,
Goss
,
L. P.
, and
Roquemore
,
W. M.
,
1998
, “
Characteristics of a Trapped-Vortex Combustor
,”
J. Propul. Power
,
14
(
1
), pp.
57
65
.10.2514/2.5266
11.
Katta
,
V. R.
, and
Roquemore
,
W. M.
,
1998
, “
Study on Trapped-Vortex Combustor-Effect of Injection on Flow Dynamics
,”
J. Propul. Power
,
14
(
3
), pp.
273
281
.10.2514/2.5286
12.
Wang
,
H.
,
Dames
,
E.
,
Sirjean
,
B.
,
Sheen
,
D. A.
,
Tango
,
R.
,
Violi
,
A.
,
Lai
,
J. Y. W.
,
Egolfopoulos
,
F. N.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Bowman
,
C. T.
,
Law
,
C. K.
,
Tsang
,
W.
,
Cernansky
,
N. P.
,
Miller
,
D. L.
, and
Lindstedt
,
R. P.
,
2010
, “
A High-Temperature Chemical Kinetic Model of n-Alkane (Up to n-Dodecane), Cyclohexane, and Methyl-, Ethyl-, n-Propyl and n-Butyl-Cyclohexane Oxidation at High Temperatures
,” JetSurF version 2.0, accessed Sept. 19, 2021, web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.html
13.
Ansys
,
2018
, “
Workbench User's Guide, v18.0
,”
Ansys
,
Canonsburg, PA
.
14.
Ansys
,
2018
, “
DesignXplorer User's Guide, v18.0
,”
Ansys
,
Canonsburg, PA
.
15.
Ansys
,
2018
, “
DesignModeler User's Guide, v18.0
,”
Ansys
,
Canonsburg, PA
.
16.
Ansys
,
2018
, “
Meshing User's Guide, v18.0
,”
Ansys
,
Canonsburg, PA
.
17.
Ansys
,
2018
, “
Fluent User's Guide, v18.0
,”
Ansys
,
Canonsburg, PA
.
18.
Ansys
,
2018
, “
Fluent Theory Guide, v18.0
,”
Ansys
,
Canonsburg, PA
.
19.
Ansys
,
2018
, “
CFD-Post User's Guide, v18.0
,”
Ansys
,
Canonsburg, PA
.
20.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
21.
S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
,
1991
, “
Aircraft Propulsion System Performance Station Designation and Nomenclature
,” SAE International, Warrendale, PA, Report No. ARP755, 10–09.
22.
Hadka
,
D.
,
2011
, “
Beginner's Guide to the MOEA Framework
,” MOEA Framework, accessed Oct. 1, 2021, http://moeaframework.org/documentation.html
You do not currently have access to this content.