Abstract

The design and analysis of the secondary air system (SAS) of gas turbine engine is a complex and time-consuming process because of the complicated topology and iterative nature of SAS design. The conventional SAS design-analysis model generation process is quite tedious and inefficient. It is still largely dependent on human expertise and thus incurs high time-cost. This paper presents an automated, whole-engine SAS flow network model generation methodology. This method accesses a prebuilt feature-based whole-engine geometry model and transforms the geometry features into the features suitable for SAS flow network analysis. The proposed method extracts both the geometric and non-geometric information from the engine geometry model such as rotational frames, materials, and boundary conditions. Apart from ensuring geometric consistency, this methodology also establishes a bidirectional information exchange protocol between the engine geometry model and the SAS flow network model, which enables to make engine geometry modifications based on SAS analysis results. The application of this feature mapping methodology is demonstrated by generating the SAS flow network model of a modern three-shaft gas turbine engine. This flow network model is generated within a few minutes, without any human intervention, which significantly reduces the SAS design-analysis time cost. The proposed methodology seamlessly links the geometry and the air system modelers of Virtual Gas Turbines simulation framework and thus allows performing a large number of whole-engine SAS simulations, design optimizations and fast redesign activities.

References

1.
Alexiou
,
A.
, and
Mathioudakis
,
K.
,
2009
, “
Secondary Air System Component Modeling for Engine Performance Simulations
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), pp.
1
9
.10.1115/1.3030878
2.
Foley
,
A.
,
2001
, “
On the Performance of Gas Turbine Secondary Air Systems
,”
ASME
Paper No. 2001-GT-0199.10.1115/2001-GT-0199
3.
Moore
,
A.
,
1975
, “
Gas Turbine Engine Internal Air Systems: A Review of Requirements and the Problems
,”
ASME
Paper No. 75-WA/GT-1.10.1115/75-WA/GT-1
4.
Zimmermann
,
H.
,
1990
, “
Some Aerodynamic Aspects of Engine Secondary Air Systems
,”
ASME J. Eng. Gas Turbines Power
,
112
(
2
), pp.
223
228
.10.1115/1.2906166
5.
Rose
,
J.
,
1977
, “
FLOWNET: A Computer Program for Calculating Secondary Air Flow Conditions in a Network of Turbomachinery
,” Lewis Research Center, Cleveland, OH, pp.
1
66
, Standard No. Nasa TM X-73774.
6.
Kutz
,
K.
, and
Speer
,
T.
,
1994
, “
Simulation of the Secondary Air System of Aero Engines
,”
ASME J. Turbomach.
,
116
(
2
), pp.
306
315
.10.1115/1.2928365
7.
Owen
,
J. M.
,
2007
, “
Modelling Internal Air Systems in Gas Turbine Engines
,”
J. Aerosp. Power
,
22
(
4
), pp.
505
520
.https://www.researchgate.net/publication/279998780_Modelling_internal_air_systems_in_gas_turbine_engines
8.
Muller
,
Y.
,
2008
, “
Secondary Air System Model for Integrated Thermomechanical Analysis of a Jet Engine
,”
ASME
Paper No. GT2008-50078.10.1115/GT2008-50078
9.
Muller
,
Y.
,
2009
, “
Integrated Fluid Network-ThermoMechanical Approach for the Coupled Analysis of a Jet Engine
,”
ASME
Paper No. GT2009-59104.10.1115/GT2009-59104
10.
Gallar
,
L.
,
Calcagni
,
C.
,
Pachidis
,
V.
, and
Pilidis
,
P.
,
2009
, “
Development of a One-Dimensional Dynamic Gas Turbine Secondary Air System Model—Part I: Tool Components Development and Validation
,”
ASME
Paper No. GT2009-60058.10.1115/GT2009-60058
11.
Nikolaidis
,
T.
,
Wang
,
H.
, and
Laskaridis
,
P.
,
2020
, “
Transient Modelling and Simulation of Gas Turbine Secondary Air System
,”
J. Appl. Therm. Eng.
,
170
, p.
115038
.10.1016/j.applthermaleng.2020.115038
12.
Prasad
,
B.
,
Karthik
,
S.
,
Nagalakshmi
,
K.
,
Sethumanavalan
,
V.
, and
Rao
,
N.
,
2004
, “
A Combined CFD and Flow Network Approach for the Simulation of Secondary Air System of Aero Engines
,”
Proceedings of 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, Hawaii, Mar. 7–11, Paper No. ISROMAC10-2004-128, pp.
195
196
.
13.
Smout
,
P.
,
Chew
,
J.
, and
Childs
,
P.
,
2002
, “
ICAS-GT: A European Collaborative Research Programme on Internal Cooling Air Systems for Gas Turbines
,”
ASME
Paper No. GT-2002-30479.10.1115/GT-2002-30479
14.
Chew
,
J.
, and
Hills
,
N.
,
2007
, “
Computational Fluid Dynamics for Turbomachinery Internal Air Systems
,”
Philos. Trans. R. Soc. Ser. A
,
365
(
1859
), pp.
2587
2611
.10.1098/rsta.2007.2022
15.
Peoc'h
,
T.
,
2019
, “
Automation and Integration of SAS Workflow for Multidisciplinary Design Optimisation of Gas Turbines
,” Master's thesis,
Ecole de Technologie Superieure, Universite du Quebec
,
Montreal
, QC, Canada.
16.
Lytle
,
J.
,
2001
, “
The Numerical Propulsion System Simulation: An Advanced Engineering Tool for Airbreathing Engines
,”
Proceedings of International Symposium on Air Breathing Engines
, Bangalore, India, Sept. 3–7, Paper No. ISABE-2001-1216.
17.
Follen
,
G.
,
2002
, “
An Object-Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems
,”
Proceedings of RTO AVT Symposium
, Paris, France, Apr. 22–25, Paper No. RTO-MP-089.https://apps.dtic.mil/sti/citations/ADP014162
18.
Lytle
,
J.
,
Horowitz
,
J.
, and
Lavelle
,
T.
,
2007
, “
Simulation Environment for the Virtual Design and Testing of Propulsion Systems
,”
Proceedings of International Symposium on Air Breathing Engines
, Beijing, China, Sept. 2–7, Paper No. ISABE-2007-1144, pp.
1
6
.
19.
Alexiou
,
A.
, and
Mathioudakis
,
K.
,
2005
, “
Development of Gas Turbine Performance Models Using a Generic Simulation Tool
,”
ASME
Paper No. GT2005-68678.10.1115/GT2005-68678
20.
Bala
,
A.
,
Sethi
,
V.
,
Lo Gatto
,
E.
,
Pichidis
,
V.
, and
Pilidis
,
P.
,
2007
, “
PROOSIS: A Collaborative Venture for Gas Turbine Performance Simulation Using an Object Oriented Programming Schema
,”
Proceedings of International Symposium on Air Breathing Engines
, Beijing, China, Sept. 2–7, ISABE-2007-1357, pp.
1
11
.https://www.researchgate.net/profile/Vassilios-Pachidis/publication/253000147_PROOSIS_-_A_Collaborative_Venture_for_Gas_Turbine_Performance_Simulation_using_an_Object_Oriented_Programming_Schema/links/0deec53c8e1c5b70e8000000/PROOSISA-Collaborative-Venture-for-Gas-Turbine-Performance-Simulation-using-an-Object-Oriented-Programming-Schema.pdf
21.
Rey Villazon
,
J. M.
,
Wildow
,
T.
,
Benton
,
R.
,
Eydam
,
T.
, and
Kühhorn
,
A.
,
2015
, “
Advanced Turbine Preliminary Design Environment for the Automatic Generation of Secondary Air System Models
,”
ASME
Paper No. GT2015-42661.10.1115/GT2015-42661
22.
Kulkarni
,
D. Y.
,
2013
, “
Feature-Based Computational Geometry and Secondary Air System Modelling for Virtual Gas Turbines
,”
Ph.D. thesis
,
Imperial College London,
London, UK.https://spiral.imperial.ac.uk/bitstream/10044/1/56959/5/Kulkarni-DY-2014-PhD-Thesis.pdf
23.
Kulkarni
,
D. Y.
, and
di Mare
,
L.
,
2012
, “
Virtual Engine Geometry Representation
,” Technical Presentation, Vibration UTC,
Imperial College London
, London, UK.
24.
di Mare
,
L.
,
Kulkarni
,
D. Y.
,
Wang
,
F.
,
Romanov
,
A.
,
Ramar
,
P. R.
, and
Zachariadis
,
Z. I.
,
2011
, “
Virtual Gas Turbines: Geometry and Conceptual Description
,”
ASME
Paper No. GT2011-46437.10.1115/GT2011-46437
25.
Wang
,
F.
, and
di Mare
,
L.
,
2013
, “
Automated Hex Meshing for Turbomachinery Secondary Air System
,”
Proceedings of the 21st International Meshing Roundtable
,
Springer
, San Jose, CA, Oct. 13–16, Paper No. IMR 2012, pp.
549
566
.10.1007/978-3-642-33573-0-32
26.
Wang
,
F.
,
Carnevale
,
M.
,
Lu
,
G.
,
di Mare
,
L.
, and
Kulkarni
,
D. Y.
,
2016
, “
Virtual Gas Turbine: Pre-Processing and Numerical Simulations
,”
ASME
Paper No. GT2016-56227.10.1115/GT2016-56227
27.
Lu
,
G.
,
Wang
,
F.
,
di Mare
,
L.
,
Moss
,
M.
, and
May
,
G.
,
2018
, “
Data Re-Use for Preliminary Thermal-Mechanical Design of Gas Turbine Engines
,”
Aeronaut. J.
,
122
(
1249
), pp.
462
486
.10.1017/aer.2017.137
28.
Shah
,
J. J.
,
1988
, “
Feature Transformations Between Application-Specific Feature Spaces
,”
Comput.-Aided Eng.
,
5
(
6
), pp.
247
255
.10.1049/cae.1988.0055
29.
Shah
,
J. J.
,
Urban
,
S. D.
,
Raghupathy
,
S. P.
, and
Rogers
,
M. T.
,
1992
, “
Synergetic Design Systems
,”
Comput. Eng.
,
1
, pp.
283
290
.10.1115/CIE1992-0035
30.
Bronsvoort
,
W. F.
, and
Jansen
,
F. W.
,
1993
, “
Feature Modelling and Conversion - Key Concepts to Concurrent Engineering
,”
Comput. Ind.
,
21
(
1
), pp.
61
86
.10.1016/0166-3615(93)90045-3
31.
Cunningham
,
J. J.
, and
Dixon
,
J. R.
,
1988
, “
Designing With Features: The Origin of Features
,”
ASME
Paper No. ASME-CEC88.10.1115/ASME-CEC88
32.
Geelink
,
R.
,
Salomons
,
O.
,
van Slooten
,
F.
,
van Houten
,
F.
, and
Kals
,
H.
,
1995
, “
Unified Feature Definition for Feature Based Design and Feature Based Manufacturing
,”
ASME
Paper No. ASME-CEC95.10.1115/ASME-CEC95
33.
Liang
,
W. Y.
, and
O'Grady
,
P.
,
1998
, “
Design With Objects: An Approach to Object-Oriented Design
,”
Comput.-Aided Des.
,
30
(
12
), pp.
943
956
.10.1016/S0010-4485(98)00050-5
34.
Connacher
,
H. I.
,
Jayaram
,
S.
, and
Lyons
,
K.
,
1995
, “
Virtual Assembly Design Environments
,”
ASME
Paper No. CIE1995-0816.
10.1115/CIE1995-0816
35.
Shah
,
J. J.
, and
Rogers
,
M.
,
1988
, “
Functional Requirements and Conceptual Design of the Feature-Based Modelling System
,”
Comput. Aided Eng.
,
5
(
1
), pp.
9
15
.10.1049/cae.1988.0004
36.
Shah
,
J. J.
,
1990
, “
The Design of Design Environments
,”
ASME
Paper No. ASME-CEC90.10.1115/ASME-CEC90
37.
Chan
,
K.
, and
Nhieu
,
J.
,
1993
, “
A Framework for Feature Based Applications
,”
Comput. Ind. Eng.
,
24
(
2
), pp.
151
164
.10.1016/0360-8352(93)90004-H
38.
Libardi
,
E. C.
,
Dixon
,
J. R.
, and
Simmons
,
M. K.
,
1988
, “
Computer Environments for the Design of Mechanical Assemblies: A Research Review
,”
Eng. Comput.
,
3
(
3
), pp.
121
136
.10.1007/BF01349624
39.
Kulkarni
,
D. Y.
,
Lu
,
G.
,
Wang
,
F.
, and
di Mare
,
L.
,
2021
, “
Virtual Gas Turbines Part I: A Top-Down Geometry Modelling Environment for Turbomachinery Application
,”
ASME
Paper No. GT2021-59719.10.1115/GT2021-59719
40.
Shah
,
J. J.
,
1991
, “
Assessment of Features Technology
,”
Comput.-Aided Des.
,
23
(
5
), pp.
331
343
.10.1016/0010-4485(91)90027-T
41.
van Leeuwen
,
J. P.
,
Wagter
,
H.
, and
Oxman
,
R. M.
,
1995
, “
A Feature-Based Approach to Modelling Architectural Information
,”
Proceedings of the CIB W78 Workshop: Modeling of Building Through Their Life-Cycle
, Stanford, CA, Aug. 22–24, pp.
467
479
.https://www.researchgate.net/publication/237671488_A_Feature_Based_Approach_to_Modelling_Architectural_Information
42.
Mantyla
,
M.
,
1990
, “
A Modelling System for Top-Down Design of Assembled Products
,”
IBM J. Res. Dev.
,
34
(
5
), pp.
636
659
.10.1147/rd.345.0636
43.
Bose
,
P.
,
Czyzowicz
,
J.
,
Kranakis
,
E.
,
Krizanc
,
D.
, and
Maheshwari
,
A.
,
2000
, “
Polygon Cutting: Revisited
,”
Japanese Conference on Discrete and Computational Geometry
(
JCDCG 1998
), Lecture Notes in Computer Science, Vol.
1763
,
Springer
Berlin Heidelberg
, Dec. 9–12, pp.
81
92
.10.1007/978-3-540-46515-7_7
44.
Chazelle
,
B.
,
1982
, “
A Theorem on Polygon Cutting With Applications
,”
Proceedings of 23rd Annual Symposium on Foundations of Computer Science
, Chicago, IL, Nov. 3–5, pp.
339
349
.10.1109/SFCS.1982.58
You do not currently have access to this content.