Abstract

Low calorific value (LCV) gaseous fuels are generated as by-products in many commercial sectors, e.g., as mine gas or biogas. Their efficient exploitation can be a considerable source of primary energy. Typically, product gases from biomass are characterized by low lower heating values (LHVs) due to their high concentration of inert gases and steam. At the same time, their composition varies strongly based on the initial feedstock and may contain unwanted components in the form of tars and ammonia. These properties make the design of appropriate combustion systems very challenging and issues such as ignition, flame stability, emission control, and combustion efficiency must be accounted for. By employing a proprietary gas turbine burner at the TU Berlin, the combustion of an artificial LCV gas mixture at stoichiometric conditions has been successfully demonstrated for a broad range of steam content in the fuel. This work presents the stability maps and emissions measured with the swirl-stabilized burner at premixed conditions. It was shown that the flame location and shape primarily depend on the steam content of the LCV gas. The steam content in the fuel was increased until flame blow-out occurred at LHVs well below the target condition of 2.87 MJ/kg (2.7 MJ/mN3). The exhaust gas is analyzed in terms of the pollutants NOx and CO for different fuel compositions, moisture contents, and thermal powers. Finally, OH* measurements have been carried out in the flame. A simple reactor network simulation was used to confirm the feasibility of the experimental results.

References

1.
REN21 Secretariat
,
2019
, “
Renewables 2019 Global Status Report
,” REN21 Secretariat, Paris, France.https://www.ren21.net/wpcontent/uploads/2019/05/gsr_2019_full_report_en.pdf
2.
Al-Halbouni
,
A.
,
Rahms
,
H.
,
Giese
,
A.
,
Schmitz
,
I.
,
Scherer
,
V.
,
Robeck
,
M.
,
Widmann
,
R.
,
Schaefer
,
S.
,
Lange
,
C.
,
Ertl
,
K.-H.
,
Betsch
,
M.
,
Dielmann
,
K.-P.
, and
Schulzke
,
T.
,
2008
, “
Entwicklung Flexibler Feuerungssysteme Zur Verbrennung Von Schwachgasen in Mikrogasturbinen-Brennkammern
,” Gaswärme-Institut e.V. Essen, VDI-Verlag, Düsseldorf, Germany.
3.
Bundesministerium für Wirtschaft und Energie (BMWi)
,
2018
, “
Erneuerbare Energien in Zahlen—Nationale Und Internationale Entwicklung im Jahr 2017
,” Bundesministerium für Wirtschaft und Energie (BMWi), Berlin, Germany.
4.
Postel
,
J.
,
Jung
,
U.
,
Fischer
,
E.
, and
Scholwin
,
F.
,
2009
, “
Stand Der Technik Beim Bau Und Betrieb Von Biogasanlagen—Bestandsaufnahme 2008
,” Deutsches BiomasseForschungsZentrum, Leipzig, Germany, Report No. 38/2009.
5.
Joos
,
F.
,
2006
,
Technische Verbrennung
,
Springer
,
Berlin
.
6.
Zornek
,
T.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Performance Analysis of the Micro Gas Turbine Turbec T100 With a New FLOX-Combustion System for Low Calorific Fuels
,”
Appl. Energy
,
159
, pp.
276
284
.10.1016/j.apenergy.2015.08.075
7.
Eriksson
,
P.
,
Walsh
,
S.
,
Gabrielsson
,
R.
,
Waldheim
,
L.
, and
Hermann
,
F.
,
2002
, “
Design and Evaluation of an LCV Combustor for the Volvo vt4400 Industrial Gas Turbine
,”
ASME
Paper No. GT2002-30088.10.1115/GT2002-30088
8.
Al-Shaikhly
,
A.
,
Mina
,
T.
, and
Neergaard
,
M.
,
1994
, “
Development of a Dual Fuel LBTU Gas/Diesel Burning Combustion System for a 4.2 MW Gas Turbine
,”
ASME
Paper No. 94-GT-438.10.1115/1994-GT-438
9.
Hoppesteyn
,
P. D. J.
,
1999
,
Application of Low Calorific Value Gaseous Fuels in Gas Turbine Combustors
,
Delft University Press
, Delft, The Netherlands.
10.
Mordaunt
,
C. J.
, and
Pierce
,
W. C.
,
2014
, “
Design and Preliminary Results of an Atmospheric-Pressure Model Gas Turbine Combustor Utilizing Varying CO2 Doping Concentration in ch4 to Emulate Biogas Combustion
,”
Fuel
,
124
, pp.
258
268
.10.1016/j.fuel.2014.01.097
11.
Adouane
,
B.
,
Hoppesteyn
,
P.
,
de Jong
,
W.
,
van der Wel
,
M.
,
Hein
,
K. R.
, and
Spliethoff
,
H.
,
2002
, “
Gas Turbine Combustor for Biomass Derived LCV Gas, a First Approach Towards Fuel-NOx Modelling and Experimental Validation
,”
Appl. Therm. Eng.
,
22
(
8
), pp.
959
970
.10.1016/S1359-4311(02)00013-3
12.
Adouane
,
B.
,
de Jong
,
W.
,
van Buijtenen
,
J.
, and
Witteveen
,
G.
,
2010
, “
Fuel-NOx Emissions Reduction During the Combustion of LCV Gas in an Air Staged Winnox-TUD Combustor
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
1034
1038
.10.1016/j.applthermaleng.2010.01.019
13.
Kelsall
,
G.
,
Smith
,
M.
, and
Cannon
,
M.
,
1994
, “
Low Emissions Combustor Development for an Industrial Gas Turbine to Utilize LCV Fuel Gas
,”
ASME J. Eng. Gas Turbines Power
,
116
(
3
), pp.
559
566
.10.1115/1.2906856
14.
Fossum
,
M.
,
Beyer
,
R. V.
, and
Bioenergy
,
I.
,
1998
, “
Co-Combustion: Biomass Fuel Gas and Natural Gas
,”
SINTEF Energy Research
,
Trondheim, Norway
.
15.
Zhen
,
H.
,
Leung
,
C.
,
Cheung
,
C.
, and
Huang
,
Z.
,
2014
, “
Characterization of Biogas-Hydrogen Premixed Flames Using Bunsen Burner
,”
Int. J. Hydrogen Energy
,
39
(
25
), pp.
13292
13299
.10.1016/j.ijhydene.2014.06.126
16.
Cardona
,
C. A.
, and
Amell
,
A. A.
,
2013
, “
Laminar Burning Velocity and Interchangeability Analysis of Biogas/C3H8/H2 With Normal and Oxygen-Enriched Air
,”
Int. J. Hydrogen Energy
,
38
(
19
), pp.
7994
8001
.10.1016/j.ijhydene.2013.04.094
17.
Pizzuti
,
L.
,
Martins
,
C.
, and
Lacava
,
P.
,
2016
, “
Laminar Burning Velocity and Flammability Limits in Biogas: A Literature Review
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
856
865
.10.1016/j.rser.2016.05.011
18.
Lafay
,
Y.
,
Taupin
,
B.
,
Martins
,
G.
,
Cabot
,
G.
,
Renou
,
B.
, and
Boukhalfa
,
A.
,
2007
, “
Experimental Study of Biogas Combustion Using a Gas Turbine Configuration
,”
Exp. Fluids
,
43
(
2–3
), pp.
395
410
.10.1007/s00348-007-0302-6
19.
Wilson
,
D. A.
, and
Lyons
,
K. M.
,
2009
, “
On Diluted-Fuel Combustion Issues in Burning Biogas Surrogates
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
041802
.10.1115/1.4000152
20.
Zhen
,
H.
,
Leung
,
C.
, and
Cheung
,
C.
,
2013
, “
Effects of Hydrogen Addition on the Characteristics of a Biogas Diffusion Flame
,”
Int. J. Hydrogen Energy
,
38
(
16
), pp.
6874
6881
.10.1016/j.ijhydene.2013.02.046
21.
Leung
,
T.
, and
Wierzba
,
I.
,
2008
, “
The Effect of Hydrogen Addition on Biogas Non-Premixed Jet Flame Stability in a Co-Flowing Air Stream
,”
Int. J. Hydrogen Energy
,
33
(
14
), pp.
3856
3862
.10.1016/j.ijhydene.2008.04.030
22.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.10.1115/1.4029119
23.
Kuhn
,
P.
,
Terhaar
,
S.
,
Reichel
,
T.
, and
Paschereit
,
C. O.
,
2015
, “
Design and Assessment of a Fuel-Flexible Low Emission Combustor for Dry and Steam-Diluted Conditions
,”
ASME
Paper No. GT2015-43375.10.1115/GT2015-43375
24.
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Krüger
,
O.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Numerical Investigation of the Flow Field and Mixing in a Swirl-Stabilized Burner With a Non-Swirling Axial Jet
,”
ASME
Paper No. GT2015-43382.10.1115/GT2015-43382
25.
Reichel
,
T. G.
,
Goeckeler
,
K.
, and
Paschereit
,
O.
,
2015
, “
Investigation of Lean Premixed Swirl-Stabilized Hydrogen Burner With Axial Air Injection Using OH-PLIF Imaging
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111513
.10.1115/1.4031181
26.
Reichel
,
T.
,
2017
, “
Flashback Prevention in Lean-Premixed Hydrogen Combustion
,” Ph.D. thesis,
Technische Universität Berlin
, Berlin, Germany.
27.
Reichel
,
T. G.
, and
Paschereit
,
C. O.
,
2017
, “
Interaction Mechanisms of Fuel Momentum With Flashback Limits in Lean-Premixed Combustion of Hydrogen
,”
Int. J. Hydrogen Energy
,
42
(
7
), pp.
4518
4529
.10.1016/j.ijhydene.2016.11.018
28.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2018
, “
Flashback Resistance and Fuel–Air Mixing in Lean Premixed Hydrogen Combustion
,”
J. Propul. Power
,
34
(
3
), pp.
690
701
.10.2514/1.B36646
29.
Stathopoulos
,
P.
,
Kuhn
,
P.
,
Wendler
,
J.
,
Tanneberger
,
T.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
,
Schmalhofer
,
C.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2016
, “
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041507
.10.1115/1.4034687
30.
Mira
,
D.
,
Lehmkuhl
,
O.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Paschereit
,
C. O.
, and
Vázquez
,
M.
,
2018
, “
Numerical Investigation of a Lean Premixed Swirl-Stabilized Hydrogen Combustor and Operational Conditions Close to Flashback
,”
ASME
Paper No. GT2018-76229.10.1115/GT2018-76229
31.
Beér
,
J.
, and
Chigier
,
N.
,
1972
,
Combustion Aerodynamics
(Fuel and Energy Science Series),
Applied Science Publishers Limited
, London, UK.
32.
Blümner
,
R.
,
Paschereit
,
C.
,
Oberleithner
,
O. K.
, and
Ćosić
,
B.
,
2016
, “
Experimental Analysis of High-Amplitude Temporal Equivalence Ratio Oscillations in the Mixing Section of a Swirl-Stabilized Burner
,”
ASME
Paper No. GT2016-56585.10.1115/GT2016-56585
33.
Goeke
,
S.
,
2012
, “
Ultra Wet Combustion—An Experimental and Numerical Study
,” Ph.D. thesis,
TU Berlin
, Berlin, Germany.
34.
Göckeler
,
K.
,
2015
, “
Influence of Steam Dilution and Hydrogen Enrichment on Laminar Premixed Methane Flames
,” Ph.D. thesis,
TU Berlin
, Berlin, Germany.
35.
SmithGolden
,
G.
,
Frenklach
,
D.
,
Moriarty
,
M.
,
Eiteneer
,
N.
,
Goldenberg
,
B.
,
Bowman
,
M.
,
Hanson
,
C.
,
Song
,
R.
,
Gardiner
,
S. W.
, Jr.
,
Lissianski
,.
V.
, and
Qin
,
Z.
,
2019
, “
GRI-Mech 3.0
,” accessed Jan. 29, 2019, http://combustion.berkeley.edu/gri-mech/
You do not currently have access to this content.