Abstract

The precessing vortex core (PVC) is a self-excited flow oscillation state occurring in swirl nozzles. This is caused by the presence of a marginally unstable hydrodynamic helical mode that induces precession of the vortex breakdown bubble (VBB) around the flow axis. The PVC can impact emissions and thermoacoustic stability characteristics of combustors in various ways, as several prior studies have shown. In this paper, we examine the impact of centerbody diameter (Dc) on the PVC in a nonreacting flow in a single nozzle swirl combustor. Time-resolved high-speed stereoscopic PIV measurements are performed for combinations of two swirl numbers, S = 0.67 and 1.17 and Dc = 9.5 mm, 4.73 mm, and 0 (i.e., no centerbody). The bulk flow velocity at the nozzle exit plane is kept constant as Ub = 8 m/s for all cases (Re20,000). The centerbody end face lies in the nozzle exit plane. A new modal decomposition technique based on wavelet filtering and proper orthogonal decomposition provides insight into flow dynamics in terms of global modes extracted from the data. The results show that without a centerbody, a coherent PVC is present in the flow as expected. The introduction of a centerbody makes the PVC oscillations intermittent. These results suggest two routes to intermittency as follows. For S = 0.67, the VBB and centerbody wake recirculation zone regions are nominally distinct. Intermittent separation and merger due to turbulence result in PVC oscillations due to the destabilization of the hydrodynamic VBB precession mode of the flow. In the S = 1.17 case, the time averaged VBB position causes it to engulf the centerbody. In this case, the emergence of intermittent PVC oscillations is a result of the response of the flow to broadband stochastic forcing imposed on the time averaged vorticity field due to turbulence.

References

1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
, Boca Raton, FL.
2.
Benjamin
,
T. B.
,
1967
, “
Some Developments in the Theory of Vortex Breakdown
,”
J. Fluid Mech.
,
28
(
1
), pp.
65
84
.10.1017/S0022112067001909
3.
Sarpkaya
,
T.
,
1971
, “
On Stationary and Travelling Vortex Breakdowns
,”
J. Fluid Mech.
,
45
(
3
), pp.
545
559
.10.1017/S0022112071000181
4.
Leibovich
,
S.
,
1978
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
221
246
.10.1146/annurev.fl.10.010178.001253
5.
Liang
,
H.
, and
Maxworthy
,
T.
,
2005
, “
An Experimental Investigation of Swirling Jets
,”
J. Fluid Mech.
,
525
, pp.
115
159
.10.1017/S0022112004002629
6.
Escudier
,
M.
, and
Keller
,
J.
,
1985
, “
Recirculation in Swirling Flow-a Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
(
1
), pp.
111
116
.10.2514/3.8878
7.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
8.
Manoharan
,
K.
,
Frederick
,
M.
,
Clees
,
S.
,
O'Connor
,
J.
, and
Hemchandra
,
S.
,
2020
, “
A Weakly Nonlinear Analysis of the Precessing Vortex Core Oscillation in a Variable Swirl Turbulent Round Jet
,”
J. Fluid Mech.
,
884
, p.
A29
.10.1017/jfm.2019.903
9.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
10.
Taamallah
,
S.
,
Dagan
,
Y.
,
Chakroun
,
N.
,
Shanbhogue
,
S.
,
Vogiatzaki
,
K.
, and
Ghoniem
,
A. F.
,
2019
, “
Helical Vortex Core Dynamics and Flame Interaction in Turbulent Premixed Swirl Combustion: A Combined Experimental and Large Eddy Simulation Investigation
,”
Phys. Fluids
,
31
(
2
), p.
025108
.10.1063/1.5065508
11.
Shanbhogue
,
S.
,
Sanusi
,
Y.
,
Taamallah
,
S.
,
Habib
,
M.
,
Mokheimer
,
E.
, and
Ghoniem
,
A.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
12.
Taamallah
,
S.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2016
, “
Turbulent Flame Stabilization Modes in Premixed Swirl Combustion: Physical Mechanism and Karlovitz Number-Based Criterion
,”
Combust. Flame
,
166
, pp.
19
33
.10.1016/j.combustflame.2015.12.007
13.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.10.1016/j.combustflame.2015.02.015
14.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
15.
LaBry
,
Z. A.
,
Shanbhogue
,
S. J.
,
Speth
,
R. L.
, and
Ghoniem
,
A. F.
,
2011
, “
Flow Structures in a Lean-Premixed Swirl-Stabilized Combustor With Microjet Air Injection
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1575
1581
.10.1016/j.proci.2010.06.092
16.
Ghoniem
,
A. F.
,
Labry
,
Z. A.
,
Shanbhogue
,
S. J.
, and
Speth
,
R. L.
,
2014
, “
Swirl-Counter-Swirl Microjets for Thermoacoustic Instability Suppression
,” U.S. Patent No. 8,708,696 B2.
17.
Anacleto
,
P.
,
Fernandes
,
E.
,
Heitor
,
M.
, and
Shtork
,
S.
,
2003
, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
(
8
), pp.
1369
1388
.10.1080/00102200302354
18.
Lückoff
,
F.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2020
, “
Impact of the Precessing Vortex Core on NOx Emissions in Premixed Swirl-Stabilized Flames: An Experimental Study
,”
ASME J. Eng. Gas Turbines Power
,
142
(
11
), p.
111010
.10.1115/1.4048603
19.
Mukherjee
,
A.
,
Muthichur
,
N.
,
More
,
C.
,
Gupta
,
S.
, and
Hemchandra
,
S.
,
2021
, “
The Role of the Centerbody Wake on the Precessing Vortex Core Dynamics of a Swirl Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051019
.10.1115/1.4050155
20.
Kaiser
,
T. L.
,
Oberleithner
,
K.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2019
, “
Examining the Effect of Geometry Changes in Industrial Fuel Injection Systems on Hydrodynamic Structures With Biglobal Linear Stability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011024
.10.1115/1.4045018
21.
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2016
, “
Coherent Structures in a Swirl Injector at Re= 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.10.1017/jfm.2016.86
22.
Karmarkar
,
A.
,
Tyagi
,
A.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2021
, “
Impact of Turbulence on the Coherent Flame Dynamics in a Bluff-Body Stabilized Flame
,”
Proceedings of the Combustion Institute
, 38(2), pp.
3067
3075
.10.1016/j.proci.2020.08.059
23.
Yin
,
Z.
, and
Stöhr
,
M.
,
2020
, “
Time–Frequency Localisation of Intermittent Dynamics in a Bistable Turbulent Swirl Flame
,”
J. Fluid Mech.
,
882
, p. A30.https://www.semanticscholar.org/paper/Time%E2%80%93frequency-localisation-of-intermittentin-a-Yin-St%C3%B6hr/cdf520d9534f5bc6cfb618fc283fd31719a7f3d0
24.
Mendez
,
M. A.
,
Balabane
,
M.
, and
Buchlin
,
J.-M.
,
2019
, “
Multi-Scale Proper Orthogonal Decomposition of Complex Fluid Flows
,”
J. Fluid Mech.
,
870
, pp.
988
1036
.10.1017/jfm.2019.212
25.
Beer
,
J.
, and
Chigier
,
N.
,
1972
,
Combustion Aerodynamics
,
Applied Science Publishers
, London,
UK
.
26.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
.https://www.jstor.org/stable/24103957
27.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
28.
Weiss
,
J.
,
2019
, “
A Tutorial on the Proper Orthogonal Decomposition
,”
AIAA
Paper No.
2019
3333
.10.2514/6.2019-3333
29.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
30.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
31.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
, pp.
798
828
.10.1017/jfm.2016.103
32.
Grenander
,
U.
, and
Szegö
,
G.
,
1958
,
Toeplitz Forms and Their Applications
,
University of California Press
, Berkeley, CA.
33.
Percival
,
D. B.
, and
Walden
,
A. T.
,
2000
,
Wavelet Methods for Time Series Analysis
, Vol.
4
,
Cambridge University Press
, Cambridge, UK.
34.
Farrell
,
B. F.
, and
Ioannou
,
P. J.
,
1993
, “
Stochastic Forcing of the Linearized Navier–Stokes Equations
,”
Phys. Fluids A: Fluid Dyn.
,
5
(
11
), pp.
2600
2609
.10.1063/1.858894
You do not currently have access to this content.