Abstract

Model order reduction (MOR) can play a pivotal role in reducing the cost of repeated computations of large thermo-acoustic models required for comprehensive stability analysis and optimization. In this proof-of-concept study, acoustic wave propagation is modeled with a one-dimensional (1D) network approach, while acoustic–flame interactions are modeled by a flame transfer function (FTF). Three reduction techniques are applied to the acoustic subsystem: firstly modal truncation (MT) based on preserving the acoustic eigenmodes, and then two approaches that strive to preserve the input–output transfer behavior of the acoustic subsystem, i.e., truncated balanced realization (TBR) and iterative rational Krylov algorithm (IRKA). After reduction, the reduced-order models (ROMs) are coupled with the FTF. Results show that the coupled reduced system from MT accurately captures thermo-acoustic cavity modes with weak influence of the flame, but fails for cavity modes strongly influenced by the flame as well as for intrinsic thermo-acoustic (ITA) modes. On the contrary, the coupled ROMs generated with the other two methods accurately predict all types of modes. It is concluded that reduction techniques based on preserving transfer behavior are more suitable for thermo-acoustic stability analysis.

References

1.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
, pp.
319
321
.10.1038/018319a0
2.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.10.2514/1.24933
3.
Kierkegaard
,
A.
,
Boij
,
S.
, and
Efraimsson
,
G.
,
2010
, “
A Frequency Domain Linearized Navier-Stokes Equations Approach to Acoustic Propagation in Flow Ducts With Sharp Edges
,”
J. Acoust. Soc. Am.
,
127
(
2
), pp.
710
719
.10.1121/1.3273899
4.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F. M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031510
.10.1115/1.4034453
5.
Zahn
,
M.
,
Schulze
,
M.
,
Hirsch
,
C.
,
Betz
,
M.
, and
Sattelmayer
,
T.
,
2015
, “
Frequency Domain Predictions of Acoustic Wave Propagation and Losses in a Swirl Burner With Linearized Navier-Stokes Equations
,”
ASME
Paper No. GT2015-42723.10.1115/GT2015-42723
6.
Bauerheim
,
M.
,
Parmentier
,
J.-F.
,
Salas
,
P.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
An Analytical Model for Azimuthal Thermoacoustic Modes in an Annular Chamber Fed by an Annular Plenum
,”
Combust. Flame
,
161
(
5
), pp.
1374
1389
.10.1016/j.combustflame.2013.11.014
7.
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Time Domain Simulations of Nonlinear Thermoacoustic Behaviour in a Simple Combustor Using a Wave-Based Approach
,”
J. Sound Vib.
,
346
, pp.
345
360
.10.1016/j.jsv.2015.01.032
8.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. Acust.
,
102
(
5
), pp.
824
833
.10.3813/AAA.918997
9.
Bellucci
,
V.
,
Schuermans
,
B.
,
Nowak
,
D.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2005
, “
Thermoacoustic Modeling of a Gas Turbine Combustor Equipped With Acoustic Dampers
,”
ASME J. Turbomach.
,
127
(
2
), pp.
372
379
.10.1115/1.1791284
10.
Jaensch
,
S.
,
Merk
,
M.
,
Gopalakrishnan
,
E.
,
Bomberg
,
S.
,
Emmert
,
T.
,
Sujith
,
R.
, and
Polifke
,
W.
,
2017
, “
Hybrid CFD/Low-Order Modeling of Nonlinear Thermoacoustic Oscillations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3827
3834
.10.1016/j.proci.2016.08.006
11.
Meindl
,
M.
,
Albayrak
,
A.
, and
Polifke
,
W.
,
2020
, “
A State-Space Formulation of a Discontinuous Galerkin Method for Thermoacoustic Stability Analysis
,”
J. Sound Vib.
,
481
, p.
115431
.10.1016/j.jsv.2020.115431
12.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.10.1115/1.4004183
13.
Haeringer
,
M.
,
Merk
,
M.
, and
Polifke
,
W.
,
2019
, “
Inclusion of Higher Harmonics in the Flame Describing Function for Predicting Limit Cycles of Self-Excited Combustion Instabilitites
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5255
5262
.10.1016/j.proci.2018.06.150
14.
Antoulas
,
A. C.
,
2005
,
Approximation of Large-Scale Dynamical Systems
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
15.
Benner
,
P.
,
Gugercin
,
S.
, and
Willcox
,
K.
,
2015
, “
A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems
,”
SIAM Rev.
,
57
(
4
), pp.
483
531
.10.1137/130932715
16.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.10.1080/13647830.2011.552636
17.
Harrje
,
D. T.
, and
Reardon
,
F. H.
,
1972
, “
Liquid Propellant Rocket Combustion Instability
,”
National Aeronautics and Space Administration
, Washington, DC,
Technical Report No. NASA-SP-194.
18.
Zinn
,
B. T.
, and
Lores
,
M. E.
,
1971
, “
Application of the Galerkin Method in the Solution on Non-Linear Axial Combustion Instability Problems in Liquid Rockets
,”
Combust. Sci. Technol.
,
4
(
1
), pp.
269
278
.10.1080/00102207108952493
19.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi-Burner Combustion Systems
,”
ASME
Paper No. GT2003-38688.10.1115/GT2003-38688
20.
Bethke
,
S.
,
Wever
,
U.
, and
Krebs
,
W.
,
2005
, “
Stability Analysis of Gas-Turbine Combustion Chamber
,”
AIAA
Paper No. 2005-2831.10.2514/2005-2831
21.
Hummel
,
T.
,
Temmler
,
C.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Reduced Order Modeling of Aeroacoustic Systems for Stability Analyses of Thermoacoustically Non-Compact Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
051502
.10.1115/1.4031542
22.
Laurent
,
C.
,
Bauerheim
,
M.
,
Poinsot
,
T.
, and
Nicoud
,
F.
,
2019
, “
A Novel Modal Expansion Method for Low-Order Modeling of Thermoacoustic Instabilities in Complex Geometries
,”
Combust. Flame
,
206
, pp.
334
348
.10.1016/j.combustflame.2019.05.010
23.
Sayadi
,
T.
,
Le Chenadec
,
V.
,
Schmid
,
P. J.
,
Richecoeur
,
F.
, and
Massot
,
M.
,
2014
, “
Thermoacoustic Instability—A Dynamical System and Time Domain Analysis
,”
J. Fluid Mech.
,
753
, pp.
448
471
.10.1017/jfm.2014.357
24.
Meindl
,
M.
,
Cruz Varona
,
M.
,
Castagnotto
,
A.
,
Thomann
,
F.
,
Polifke
,
W.
, and
Lohmann
,
B.
,
2018
, “
Model Order Reduction in Thermoacoustic Stability Analysis
,”
MATHMOD 2018 Extended Abstract Volume, Ninth Vienna Conference on Mathematical Modelling
, Vienna, Austria, Feb. 21–23, pp. 97–98.10.11128/arep.55.a55266
25.
Emmert
,
T.
,
Jaensch
,
S.
,
Sovardi
,
C.
, and
Polifke
,
W.
,
2014
, “
taX—A Flexible Tool for Low-Order Duct Acoustic Simulation in Time and Frequency Domain
,”
Seventh Forum Acusticum
, DEGA, Krakow, Poland, Sept. 7–12, pp.
7
12
.https://www.researchgate.net/profile/Wolfgang-Polifke/publication/321133671_taX_-_a_Flexible_Tool_for_Low-Order_Duct_Acoustic_Simulation_in_Time_and_Frequency_Domain/links/5a15b2b24585153b546cab25/taX-a-Flexible-Toolfor-Low-Order-Duct-Acoustic-Simulation-in-Time-and-Frequency-Domain.pdf
26.
Hoeijmakers
,
M.
,
Kornilov
,
V.
,
Lopez Arteaga
,
I.
,
de Goey
,
P.
, and
Nijmeijer
,
H.
,
2014
, “
Intrinsic Instability of Flame-Acoustic Coupling
,”
Combust. Flame
,
161
(
11
), pp.
2860
2867
.10.1016/j.combustflame.2014.05.009
27.
Emmert
,
T.
,
Bomberg
,
S.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2017
, “
Acoustic and Intrinsic Thermoacoustic Modes of a Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3835
3842
.10.1016/j.proci.2016.08.002
28.
Mukherjee
,
N. K.
, and
Shrira
,
V.
,
2017
, “
Intrinsic Flame Instabilities in Combustors: Analytic Description of a 1-D Resonator Model
,”
Combust. Flame
,
185
, pp.
188
209
.10.1016/j.combustflame.2017.07.012
29.
Silva
,
C. F.
,
Merk
,
M.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2017
, “
The Contribution of Intrinsic Thermoacoustic Feedback to Combustion Noise and Resonances of a Confined Turbulent Premixed Flame
,”
Combust. Flame
,
182
, pp.
269
278
.10.1016/j.combustflame.2017.04.015
30.
Ghani
,
A.
,
Steinbacher
,
T.
,
Albayrak
,
A.
, and
Polifke
,
W.
,
2019
, “
Intrinsic Thermoacoustic Feedback Loop in Turbulent Spray Flames
,”
Combust. Flame
,
205
(
7
), pp.
22
32
.10.1016/j.combustflame.2019.03.039
31.
Yong
,
K. J.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2021
, “
A Categorization of Marginally Stable Thermoacoustic Modes Based on Phasor Diagrams
,”
Combust. Flame
,
228
, pp.
236
249
.10.1016/j.combustflame.2021.01.003
32.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
, 2nd ed.,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
33.
Castagnotto
,
A.
,
Cruz Varona
,
M.
,
Jeschek
,
L.
, and
Lohmann
,
B.
,
2017
, “
sss & sssMOR: Analysis and Reduction of Large-Scale Dynamic Systems in MATLAB
,”
at - Automatisierungstechnik
,
65
(
2
), pp.
134
150
.10.1515/auto-2016-0137
34.
Litz
,
L.
,
1980
, “
Order Reduction of Linear State-Space Models Via Optimal Approximation of the Nondominant Modes
,”
IFAC Proc. Vol.
,
13
(
6
), pp.
195
202
.10.1016/S1474-6670(17)64799-2
35.
Moore
,
B.
,
1981
, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Autom. Control
,
26
(
1
), pp.
17
32
.10.1109/TAC.1981.1102568
36.
Brunton
,
S.
, and
Kutz
,
J.
,
2019
, Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control
,
Cambridge University Press
,
Cambridge, UK
.
37.
Penzl
,
T.
,
1999
, “
A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations
,”
SIAM J. Sci. Comput.
,
21
(
4
), pp.
1401
1418
.10.1137/S1064827598347666
38.
Wolf
,
T.
,
Panzer
,
H. K. F.
, and
Lohmann
,
B.
,
2013
, “
Model Order Reduction by Approximate Balanced Truncation: A Unifying Framework/Modellreduktion Durch Approximatives Balanciertes Abschneiden: Eine Vereinigende Formulierung
,”
at - Automatisierungstechnik
,
61
(
8
), pp.
545
556
.10.1524/auto.2013.1007
39.
Willcox
,
K.
, and
Peraire
,
J.
,
2002
, “
Balanced Model Reduction Via the Proper Orthogonal Decomposition
,”
AIAA J.
,
40
(
11
), pp.
2323
2330
.10.2514/2.1570
40.
Grimme
,
E.
,
1997
, “
Krylov Projection Methods for Model Reduction
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
41.
Gugercin
,
S.
,
Antoulas
,
A. C.
, and
Beattie
,
C.
,
2008
, “
H2 Model Reduction for Large-Scale Linear Dynamical Systems
,”
SIAM J. Matrix Anal. Appl.
,
30
(
2
), pp.
609
638
.10.1137/060666123
You do not currently have access to this content.