Abstract

The development of advanced reaction models to predict pollutant emissions in aero-engine combustors usually relies on surrogate formulations of a specific jet fuel for mimicking its chemical composition. 1,3,5-trimethylbenzene is one of the suitable components to represent aromatics species in those surrogates. However, a comprehensive reaction model for 1,3,5-trimethylbenzene combustion requires a mechanism to describe the m-xylene oxidation. In this work, the development of a chemical kinetic mechanism for describing the m-xylene combustion in a wide parameter range (i.e., temperature, pressure, and fuel equivalence ratios) is presented. The m-xylene reaction submodel was developed based on existing reaction mechanisms of similar species such as toluene and reaction pathways adapted from literature. The submodel was integrated into an existing detailed mechanism that contains the kinetics of a wide range of n-paraffins, isoparaffins, cycloparaffins, and aromatics. Simulation results for m-xylene were validated against experimental data available in literature. Results show that the presented m-xylene mechanism correctly predicts ignition delay times at different pressures and temperatures as well as laminar burning velocities at atmospheric pressure and various fuel equivalence ratios. At high pressure, some deviations of the calculated laminar burning velocity and the measured values are obtained at stoichiometric to rich equivalence ratios. Additionally, the model predicts reasonably well concentration profiles of major and intermediate species at different temperatures and atmospheric pressure.

References

1.
ACARE
,
2017
, “
Strategic Research & Innovation Agenda, The Goals of Flightpath 2050
,” ACARE, Blagnac, France, accessed Jan. 11, 2021, https://www.acare4europe.org/sria/
2.
IATA
,
2019
, “
Aircraft Technology Roadmap to 2050
,” International Air Transport Association, Geneva, Switzerland.
3.
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2015
, “
Alternative Fuels in Aviation
,”
CEAS Aeronaut. J.
,
6
(
1
), pp.
83
93
.10.1007/s13272-014-0131-2
4.
Eckel
,
G.
,
Grohmann
,
J.
,
Cantu
,
L.
,
Slavinskaya
,
N.
,
Kathrotia
,
T.
,
Rachner
,
M.
,
Le Clercq
,
P.
,
Meier
,
W.
, and
Aigner
,
M.
,
2019
, “
LES of a Swirl-Stabilized Kerosene Spray Flame With a Multi-Component Vaporization Model and Detailed Chemistry
,”
Combust. Flame
,
207
, pp.
134
152
.10.1016/j.combustflame.2019.05.011
5.
Lecocq
,
G.
,
Hernández
,
I.
,
Poitou
,
D.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2013
, “
Soot Prediction by Large-Eddy Simulation of Complex Geometry Combustion Chambers
,”
C. R. Méc.
,
341
(
1–2
), pp.
230
237
.10.1016/j.crme.2012.10.002
6.
Saggese
,
C.
,
Wan
,
K.
,
Xu
,
R.
,
Tao
,
Y.
,
Bowman
,
C. T.
,
Park
,
J.
,
Lu
,
T.
, and
Wang
,
H.
,
2020
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion chemistry—V. NOx Formation From a Typical Jet A
,”
Combust. Flame
,
212
, pp.
270
278
.10.1016/j.combustflame.2019.10.038
7.
Riebl
,
S.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2017
, “
A Study on the Emissions of Alternative Aviation Fuels
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
081503
.10.1115/1.4035816
8.
Slavinskaya
,
N. A.
,
Zizin
,
A.
, and
Aigner
,
M.
,
2010
, “
On Model Design of a Surrogate Fuel Formulation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
111501
.10.1115/1.4000593
9.
Kathrotia
,
T.
,
Richter
,
S.
,
Naumann
,
C.
,
Slavinskaya
,
N.
,
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2018
, “
Reaction Model Development for Synthetic Jet Fuels: Surrogate Fuels as a Flexible Tool to Predict Their Performance
,”
ASME
Paper No. GT2018-76997.10.1115/GT2018-76997
10.
ESTiMatE—Emissions Soot Model,
2020
, “
Clean Sky 2 Project, Joint Undertaking Under the European Union's Horizon 2020 Research and Innovation Programme, Grant Agreement No. 821418
,” ESTiMatE, accessed Jan. 11, 2021, https://estimate-project.eu/
11.
Malewicki
,
T.
,
Gudiyella
,
S.
, and
Brezinsky
,
K.
,
2013
, “
Experimental and Modeling Study on the Oxidation of Jet A and the n-Dodecane/Iso-Octane/n-Propylbenzene/1,3,5-Trimethylbenzene Surrogate Fuel
,”
Combust. Flame
,
160
(
1
), pp.
17
30
.10.1016/j.combustflame.2012.09.013
12.
Diévart
,
P.
,
Kim
,
H. H.
,
Won
,
S. H.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Dooley
,
S.
,
Wang
,
W.
, and
Oehlschlaeger
,
M. A.
,
2013
, “
The Combustion Properties of 1,3,5-Trimethylbenzene and a Kinetic Model
,”
Fuel
,
109
, pp.
125
136
.10.1016/j.fuel.2012.11.069
13.
Battin-Leclerc
,
F.
,
Bounaceur
,
R.
,
Belmekki
,
N.
, and
Glaude
,
P. A.
,
2006
, “
Experimental and Modeling Study of the Oxidation of Xylenes
,”
Int. J. Chem. Kinet.
,
38
(
4
), pp.
284
302
.10.1002/kin.20160
14.
Gaïl
,
S.
, and
Dagaut
,
P.
,
2007
, “
Oxidation of m-Xylene in a JSR: Experimental Study and Detailed Chemical Kinetic Modeling
,”
Combust. Sci. Technol.
,
179
(
5
), pp.
813
844
.10.1080/00102200600671989
15.
Narayanaswamy
,
K.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2010
, “
A Consistent Chemical Mechanism for Oxidation of Substituted Aromatic Species
,”
Combust. Flame
,
157
(
10
), pp.
1879
1898
.10.1016/j.combustflame.2010.07.009
16.
Narayanaswamy
,
K.
,
Pitsch
,
H.
, and
Pepiot
,
P.
,
2016
, “
A Component Library Framework for Deriving Kinetic Mechanisms for Multi-Component Fuel Surrogates: Application for Jet Fuel Surrogates
,”
Combust. Flame
,
165
, pp.
288
309
.10.1016/j.combustflame.2015.12.013
17.
Andrae
,
J. C. G.
,
2011
, “
A Kinetic Modeling Study of Self-Ignition of Low Alkylbenzenes at Engine-Relevant Conditions
,”
Fuel Process. Technol.
,
92
(
10
), pp.
2030
2040
.10.1016/j.fuproc.2011.06.004
18.
Gudiyella
,
S.
,
Malewicki
,
T.
,
Comandini
,
A.
, and
Brezinsky
,
K.
,
2011
, “
High Pressure Study of m-Xylene Oxidation
,”
Combust. Flame
,
158
(
4
), pp.
687
704
.10.1016/j.combustflame.2010.12.012
19.
Kathrotia
,
T.
,
Oßwald
,
P.
,
Naumann
,
C.
,
Richter
,
S.
, and
Köhler
,
M.
,
2021
, “
Combustion Kinetics of Alternative Jet Fuels, Part-II: Reaction Model for Fuel Surrogate
,”
Fuel
,
302
, p.
120736
.10.1016/j.fuel.2021.120736
20.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.10.1016/j.pecs.2012.03.004
21.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels,” Intern
,”
J. Chem. Kinet.
,
46
(
9
), pp.
512
542
.10.1002/kin.20867
22.
Ranzi
,
E.
,
Cavallotti
,
C.
,
Cuoci
,
A.
,
Frassoldati
,
A.
,
Pelucchi
,
M.
, and
Faravelli
,
T.
,
2015
, “
New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-Alkanes
,”
Combust. Flame
,
162
(
5
), pp.
1679
1691
.10.1016/j.combustflame.2014.11.030
23.
Shen
,
H. S.
, and
Oehlschlaeger
,
M. A.
,
2009
, “
The Autoignition of C8H10 Aromatics at Moderate Temperatures and Elevated Pressures
,”
Combust. Flame
,
156
(
5
), pp.
1053
1062
.10.1016/j.combustflame.2008.11.015
24.
Ji
,
C.
,
Dames
,
E.
,
Wang
,
H.
, and
Egolfopoulos
,
F. N.
,
2012
, “
Propagation and Extinction of Benzene and Alkylated Benzene Flames
,”
Combust. Flame
,
159
(
3
), pp.
1070
1081
.10.1016/j.combustflame.2011.10.017
25.
Johnston
,
R. J.
, and
Farrell
,
J. T.
,
2005
, “
Laminar Burning Velocities and Markstein Lengths of Aromatics at Elevated Temperature and Pressure
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
217
224
.10.1016/j.proci.2004.08.075
26.
Goodwin
,
D.
,
Moffat
,
H.
, and
Speth
,
R.
,
2016
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.2.1
,” Cantera, accessed Jan. 11, 2021, http://www.cantera.org
27.
Kelley
,
A. P.
, and
Law
,
C. K.
,
2009
, “
Nonlinear Effects in the Extraction of Laminar Flame Speeds From Expanding Spherical Flames
,”
Combust. Flame
,
156
(
9
), pp.
1844
1851
.10.1016/j.combustflame.2009.04.004
28.
Hui
,
X.
,
Das
,
A. K.
,
Kumar
,
K.
,
Sung
,
C.
,
Dooley
,
S.
, and
Dryer
,
F. L.
,
2012
, “
Laminar Flame Speeds and Extinction Stretch Rates of Selected Aromatic Hydrocarbons
,”
Fuel
,
97
, pp.
695
702
.10.1016/j.fuel.2012.02.045
29.
Richter
,
S.
,
Raida
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2016
, “
Measurement of the Laminar Burning Velocity of Neat Jet Fuel Components
,” Proceedings of the World Congress on Momentum, Heat and Mass Transfer (
MHMT'16
), Prague, Czech Republic, Apr. 4–5, pp. 1–5.10.11159/csp16.115
30.
Wang
,
G.
,
Li
,
Y.
,
Yuan
,
W.
,
Zhou
,
Z.
,
Wang
,
Y.
, and
Wang
,
Z.
,
2017
, “
Investigation on Laminar Burning Velocities of Benzene, Toluene and Ethylbenzene Up to 20 atm
,”
Combust. Flame
,
184
, pp.
312
323
.10.1016/j.combustflame.2017.06.017
You do not currently have access to this content.