Abstract

Thermoacoustic instabilities in annular or circular combustors are often coupled with azimuthal modes. These modes can be characterized by a spin ratio (SR), which quantifies the dominant mode between two counter-rotating waves, and a phase difference between them, which is directly related to the orientation of the antinodal line. This study investigates the instability amplitudes, SR, and phase difference of two closely spaced (3% of their mean frequency), yet distinct azimuthal modes; one is the first azimuthal (1A) mode, and the other is a combination of first azimuthal and first longitudinal (1A1L) mode. Each mode itself consists of two peaks that are spaced even more closely in frequency (0.8%). Furthermore, distinct harmonics at 2× and 3× of these frequencies, presumably associated with nonlinearities, are also evident in the spectra. Each mode is bandpass filtered in spectrum to analyze them separately. For the 1A mode, the SR and phase difference exhibit a variety of behaviors—including quasi-periodic standing waves, spinning waves, and intermittency—depending on operating conditions such as thermal power and azimuthal fuel staging. Similar trends are observed for the 1A1 L mode. Moreover, there is clear coupling between the 1A and 1A1 L modes, as their SRs are almost synchronized during the quasi-periodic standing wave. This synchronization is observed in phase differences as well, but not in the instability amplitude. For spinning dominant wave conditions, the SRs of each mode have similar average values, but they fluctuate in a seemingly random fashion. For the phase difference, both average and fluctuation are not correlated. In contrast, the instability amplitudes are strongly correlated, with modulation of the 1A mode leading to that of the 1A1 L mode. These results clearly indicate that complex coupling occurs across closely spaced frequencies under instability conditions, coupling that must be understood in order to capture limit cycle dynamics.

References

1.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, Vol.
210
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
3.
Mongia
,
H.
,
Held
,
T.
,
Hsiao
,
G.
, and
Pandalai
,
R.
,
2005
, “
Incorporation of Combustion Instability Issues Into Design Process: GE Aeroderivative and Aero Engines Experience
,”
Combustion Instabilities in Gas Turbine Engines
,
American Institute of Aeronautics and Astronautics
,
Washington, DC
.
4.
Cohen
,
J.
,
Hagen
,
G.
,
Banaszuk
,
A.
,
Becz
,
S.
, and
Mehta
,
P.
,
2011
, “
Attenuation of Combustor Pressure Oscillations Using Symmetry Breaking
,”
AIAA
Paper No. GT2011-0060. 10.2514/6.GT2011-0060
5.
Smith
,
K. O.
, and
Blust
,
J.
,
2005
, “
Combustion Instabilities in Industrial Gas Turbines: Solar Turbines' Experience
,” T. C. Lieuwen and V. Yang, eds., Combustion Instabilities in Gas Turbine Engines Operational Experience, Fundamental Mechanisms and Modeling, American Institute of Aeronautics and Astronautics, Washington, DC, pp.
29
42
.
6.
Krebs
,
W.
,
Bethke
,
S.
,
Lepers
,
J.
,
Flohr
,
P.
,
Prade
,
B.
,
Johnson
,
C.
, and
Sattinger
,
S.
,
2005
, “
Thermoacoustic Design Tools and Passive Control: Siemens Power Generation Approaches
,” T. C. Lieuwen and V. Yang, eds., Combustion Instabilities in Gas Turbine Engines Operational Experience, Fundamental Mechanisms and Modeling, American Institute of Aeronautics and Astronautics, Washington, DC.
7.
Zellhuber
,
M.
,
Meraner
,
C.
,
Kulkarni
,
R.
,
Polifke
,
W.
, and
Schuermans
,
B.
,
2013
, “
Large Eddy Simulation of Flame Response to Transverse Acoustic Excitation in a Model Reheat Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091508
.10.1115/1.4024940
8.
Sewell
,
J. B.
, and
Sobieski
,
P. A.
,
2005
, “
Monitoring of Combustion Instabilities: Calpine's Experience
,” T. C. Lieuwen and V. Yang, eds., Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, American Institute of Aeronautics and Astronautics, Washington, DC, pp.
147
162
.
9.
Ebrahimi
,
H.
,
2006
, “
Overview of Gas Turbine Augmentor Design, Operation, and Combustion Oscillation
,”
AIAA
Paper No. 2006-4916. 10.2514/6.2006-4916
10.
Rogers
,
D. E.
, and
Marble
,
F. E.
,
1956
, “
A Mechanism for High-Frequency Oscillation in Ramjet Combustors and Afterburners
,”
J. Jet Propul.
,
26
(
6
), pp.
456
462
.10.2514/8.7049
11.
Elias
,
I.
,
1959
, “
Acoustical Resonances Produced by Combustion of a Fuel-Air Mixture in a Rectangular Duct
,”
J. Acoust. Soc. Am.
,
31
(
3
), pp.
296
304
.10.1121/1.1907715
12.
Kaskan
,
W.
, and
Noreen
,
A.
,
1955
, “
High-Frequency Oscillations of a Flame Held by a Bluff Body
,”
ASME Trans.
,
77
(
6
), pp.
855
891
.10.1115/1.4014536
13.
King
,
C. R.
,
1957
, “
Experimental Investigation of Effects of Combustion-Chamber Length and Inlet Total Temperature, Total Pressure, and Velocity on Afterburner Performance
,” National Advisory Committee on Aeronautics, Paper No. NACA RM E57C07.
14.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2017
, “
Effect of Equivalence Ratio on the Modal Dynamics of Azimuthal Combustion Instabilities
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3743
3751
.10.1016/j.proci.2016.06.115
15.
Mazur
,
M.
,
Nygård
,
H. T.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2019
, “
Characteristics of Self-Excited Spinning Azimuthal Modes in an Annular Combustor With Turbulent Premixed Bluff-Body Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5129
5136
.10.1016/j.proci.2018.07.080
16.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2018
, “
Strong Azimuthal Combustion Instabilities in a Spray Annular Chamber With Intermittent Partial Blow-Off
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
031503
.10.1115/1.4037824
17.
Berger
,
F. M.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
Pulsation-Amplitude-Dependent Flame Dynamics of High-Frequency Thermoacoustic Oscillations in Lean-Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041507
.10.1115/1.4038036
18.
Kim
,
J.
,
Gillman
,
W.
,
John
,
T.
,
Adhikari
,
S.
,
Wu
,
D.
,
Emerson
,
B.
,
Acharya
,
V.
,
Lieuwen
,
T.
,
Isono
,
M.
, and
Saitoh
,
T.
,
2021
, “
Experimental Investigation of Fuel Staging Effect on Modal Dynamics of Thermoacoustic Azimuthal Instabilities in a Multi-Nozzle Can Combustor
,”
ASME
Paper No. GT2021-59098. 10.1115/GT2021-59098
19.
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2014
, “
Flame Dynamics and Unsteady Heat Release Rate of Self-Excited Azimuthal Modes in an Annular Combustor
,”
Combust. Flame
,
161
(
10
), pp.
2565
2578
.10.1016/j.combustflame.2014.03.021
20.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
21.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
22.
Poinsot
,
T.
,
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L.
, and
Muller
,
J.
,
2011
, “
Identification of Azimuthal Modes in Annular Combustion Chambers
,”
Cent. Turbul. Res. Annu. Res. Briefs
,
2011
, pp.
249
258
.http://refhub.elsevier.com/S0022-460X(20)30562-9/sbref0028
23.
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2020
, “
High Amplitude Combustion Instabilities in an Annular Combustor Inducing Pressure Field Deformation and Flame Blow Off
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011016
.10.1115/1.4045515
24.
Indlekofer
,
T.
,
Faure-Beaulieu
,
A.
,
Dawson
,
J. R.
, and
Noiray
,
N.
,
2021
, “
Dynamics of Azimuthal Thermoacoustic Modes in Imperfectly Symmetric Annular Geometries
,”
arXiv:2104.07380
.10.48550/arXiv.2104.07380
25.
Faure-Beaulieu
,
A.
,
Indlekofer
,
T.
,
Dawson
,
J. R.
, and
Noiray
,
N.
,
2021
, “
Imperfect Symmetry of Real Annular Combustors: Beating Thermoacoustic Modes and Heteroclinic Orbits
,”
J. Fluid Mech.
,
925
(R1), pp.
1
12
.10.1017/jfm.2021.649
26.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.10.1017/S0022112008003613
27.
Cazalens
,
M.
,
Roux
,
S.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2008
, “
Combustion Instability Problems Analysis for High-Pressure Jet Engine Cores
,”
J. Propul. Power
,
24
(
4
), pp.
770
778
.10.2514/1.30938
28.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2009
, “
A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031502
.10.1115/1.2981178
29.
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2012
, “
Nonlinear Interactions of Multiple Linearly Unstable Thermoacoustic Modes
,”
Int. J. Spray Combust. Dyn.
,
4
(
1
), pp.
1
27
.10.1260/1756-8277.4.1.1
30.
Sterling
,
J. D.
,
1993
, “
Nonlinear Analysis and Modelling of Combustion Instabilities in a Laboratory Combustor
,”
Combust. Sci. Technol.
,
89
(
1–4
), pp.
167
179
.10.1080/00102209308924107
31.
Bothien
,
M. R.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2014
, “
A Novel Damping Device for Broadband Attenuation of Low-Frequency Combustion Pulsations in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041504
.10.1115/1.4025761
32.
Acharya
,
V. S.
,
Bothien
,
M. R.
, and
Lieuwen
,
T. C.
,
2018
, “
Non-Linear Dynamics of Thermoacoustic Eigen-Mode Interactions
,”
Combust. Flame
,
194
, pp.
309
321
.10.1016/j.combustflame.2018.04.021
33.
Berger
,
F. M.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Kaufmann
,
J.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071501
.10.1115/1.4035591
34.
Boujo
,
E.
, and
Noiray
,
N.
,
2017
, “
Robust Identification of Harmonic Oscillator Parameters Using the Adjoint Fokker–Planck Equation
,”
Proc. R. Soc. A
,
473
(
2200
), p.
20160894
.10.1098/rspa.2016.0894
35.
Kim
,
J.-w.
,
Gillman
,
W.
,
Emerson
,
B.
,
Wu
,
D.
,
John
,
T.
,
Acharya
,
V.
,
Isono
,
M.
,
Saitoh
,
T.
, and
Lieuwen
,
T.
,
2021
, “
Modal Dynamics of High-Frequency Transverse Combustion Instabilities
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6155
6163
.10.1016/j.proci.2020.06.237
36.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal and Longitudinal Acoustic Modes
,”
ASME
Paper No. GT2013-95010. 10.1115/GT2013-95010
37.
Kim
,
J.
,
Gillman
,
W.
,
Wu
,
D.
,
Emerson
,
B.
,
Acharya
,
V.
,
Mckinney
,
R.
,
Isono
,
M.
,
Saitoh
,
T.
, and
Lieuwen
,
T. C.
,
2020
, “
Identification of High-Frequency Transverse Acoustic Modes in Multi-Nozzle Can Combustors
,”
ASME
Paper No. GT2020-16130.10.1115/GT2020-16130
38.
Kim
,
J.
,
John
,
T.
,
Adhikari
,
S.
,
Wu
,
D.
,
Emerson
,
B.
,
Acharya
,
V.
,
Isono
,
M.
,
Saito
,
T.
, and
Lieuwen
,
T.
,
2022
, “
Nonlinear Dynamics of Combustor Azimuthal Modes: Experiments and Modeling
,”
Combust. Flame
,
238
, p.
111931
.10.1016/j.combustflame.2021.111931
You do not currently have access to this content.