Abstract

Oxymethylene ethers (OMEn, n = 1–5) are a promising class of synthetic fuels that have the potential to be used as additives or substitutes to diesel in compression ignition engines. A comprehensive understanding of their combustion properties is required for their safe and efficient utilization. In this study, the results of a combined experimental and modeling work on oxidation of OME2 are reported: (i) Ignition delay time measurements of stoichiometric OME2/synthetic air mixtures diluted 1:5 with nitrogen using the shock tube method at pressures of 1, 4, and 16 bar, and (ii) laminar flame speeds of OME2/air mixtures using the cone angle method at atmospheric and elevated pressures of 3 and 6 bar. The experimental data sets obtained have been used for validation of three detailed reaction mechanisms of OME2 obtained from literature. The results of ignition delay time measurements showed that ignition of OME2 is characterized by pre-ignition activity at the low temperature side of the measurements regardless of the pressure. Regarding the performance of the different reaction mechanisms, the model from Cai et al. (2020, “Auto-Ignition of Oxymethylene Ethers (OMEn, n = 2–4) as Promising Synthetic e-Fuels From Renewable Electricity: Shock Tube Experiments and Automatic Mechanism Generation,” Fuel, 264, p. 116711) best predicted the temperature and pressure dependence of ignition delay times. For laminar flame speeds, the experimental data were well matched by the mechanism from Ren et al. (2019) at p = 1, 3, and 6 bar and for all equivalence ratios considered. From sensitivity analyses calculations, it was observed that chain reactions involving small radicals, i.e., H, O, OH, HO2, and CH3 control the oxidation of OME2. The comparison of the results of this work and our previous work (Ngugi et al. (2021)) on OME1 show that these two fuels have similar oxidation pathways. The results obtained in this work will contribute to a better understanding of the combustion of oxymethylene ethers, and thus, to the design and optimization of burners and engines as well.

References

1.
Fujishima
,
H.
,
Satake
,
Y.
,
Okada
,
N.
,
Kawashima
,
S.
,
Matsumoto
,
K.
, and
Saito
,
H.
,
2013
, “
Effects of Diesel Exhaust Particles on Primary Cultured Healthy Human Conjunctival Epithelium
,”
Ann. Allergy Asthma Immunol.
,
110
(
1
), pp.
39
43
.10.1016/j.anai.2012.10.017
2.
Emberger
,
G.
,
2017
, “
Low Carbon Transport Strategy in Europe: A Critical Review
,”
Int. J. Sustainable Trans.
,
11
(
1
), pp.
31
35
.10.1080/15568318.2015.1106246
3.
European Commission
,
2016
, “
Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A European Strategy for Low-Emission Mobility
,” Commission Staff Work, Brussels, Belgium, Document No. 244, accessed Mar. 16, 2021, https://ec.europa.eu/transport/sites/transport/files/themes/strategies/news/doc/2016-07-20-decarbonisation/swd%282016%29244. pdf
4.
Kodjak
,
D.
,
2015
, “
Policies to Reduce Fuel Consumption, Air Pollution, and Carbon Emissions From Vehicles in G20 Nations
,” International Council on Clean Transportation, Washington, DC, accessed Mar. 16, 2021, https://theicct.org/publications/policies-reduce-fuel-consumption-air-pollution-and-carbon-emissions-vehicles-g20
5.
U.S. Energy Information Administration
,
2019
, “
International Energy Outlook 2019 With Projections to 2050
,” U.S. Department of Energy, Washington, DC, accessed Mar. 16, 2021, https://www.eia.gov/outlooks/ieo/
6.
Liu
,
H.
,
Wang
,
Z.
,
Li
,
Y.
,
Zheng
,
Y.
,
He
,
T.
, and
Wang
,
J.
,
2019
, “
Recent Progress in the Application in Compression Ignition Engines and the Synthesis Technologies of Polyoxymethylene Dimethyl Ethers
,”
Appl. Energy
,
233–234
, pp.
599
611
.10.1016/j.apenergy.2018.10.064
7.
Omari
,
A.
,
Heuser
,
B.
, and
Pischinger
,
S.
,
2017
, “
Potential of Oxymethylene Ether-Diesel Blends for Ultra-Low Emission Engines
,”
Fuel
,
209
(
1
), pp.
232
237
.10.1016/j.fuel.2017.07.107
8.
Iannuzzi
,
S. E.
,
Barro
,
C.
,
Boulouchos
,
K.
, and
Burger
,
J.
,
2016
, “
Combustion Behavior and Soot Formation/Oxidation of Oxygenated Fuels in a Cylindrical Constant Volume Chamber
,”
Fuel
,
167
, pp.
49
59
.10.1016/j.fuel.2015.11.060
9.
Dworschak
,
P.
,
Berger
,
V.
,
Härtl
,
M.
, and
Wachtmeister
,
G.
,
2020
, “
Neat Oxymethylene Ethers: Combustion Performance and Emissions of OME2, OME3, OME4 and OME5 in a Single-Cylinder Diesel Engine
,” SAE Paper No. 2020-01-0805.
10.
Deutz
,
S.
,
Bongartz
,
D.
,
Heuser
,
B.
,
Kätelhön
,
A.
,
Schulze Langenhorst
,
L.
,
Omari
,
A.
,
Walters
,
M.
,
Klankermayer
,
J.
,
Leitner
,
W.
,
Mitsos
,
A.
,
Pischinger
,
S.
, and
Bardow
,
A.
,
2018
, “
Cleaner Production of Cleaner Fuels: Wind-to-Wheel–Environmental Assessment of CO2-Based Oxymethylene Ether as a Drop-in Fuel
,”
Energy Environ. Sci.
,
11
(
2
), pp.
331
343
.10.1039/C7EE01657C
11.
Omari
,
A.
,
Heuser
,
B.
,
Pischinger
,
S.
, and
Rüdinger
,
C.
,
2019
, “
Potential of Long-Chain Oxymethylene Ether and Oxymethylene Ether-Diesel Blends for Ultra-Low Emission Engines
,”
Appl. Energy
,
239
, pp.
1242
1249
.10.1016/j.apenergy.2019.02.035
12.
Burger
,
J.
,
Siegert
,
M.
,
Ströfer
,
E.
, and
Hasse
,
H.
,
2010
, “
Poly (Oxymethylene) Dimethyl Ethers as Components of Tailored Diesel Fuel: Properties, Synthesis and Purification Concepts
,”
Fuel
,
89
(
11
), pp.
3315
3319
.10.1016/j.fuel.2010.05.014
13.
Schmitz
,
N.
,
Burger
,
J.
,
Ströfer
,
E.
, and
Hasse
,
H.
,
2016
, “
From Methanol to the Oxygenated Diesel Fuel Poly(Oxymethylene) Dimethyl Ether: An Assessment of the Production Costs
,”
Fuel
,
185
, pp.
67
72
.10.1016/j.fuel.2016.07.085
14.
Cai
,
L.
,
Jacobs
,
S.
,
Langer
,
R.
,
Vom Lehn
,
F.
,
Heufer
,
K. A.
, and
Pitsch
,
H.
,
2020
, “
Auto-Ignition of Oxymethylene Ethers (OMEn, n = 2–4) as Promising Synthetic e-Fuels From Renewable Electricity: Shock Tube Experiments and Automatic Mechanism Generation
,”
Fuel
,
264
, p.
116711
.10.1016/j.fuel.2019.116711
15.
Lin
,
Q.
,
Tay
,
K. L.
,
Zhou
,
D.
, and
Yang
,
W.
,
2019
, “
Development of a Compact and Robust Polyoxymethylene Dimethyl Ether 3 Reaction Mechanism for Internal Combustion Engines
,”
Energy Convers. Manag.
,
185
, pp.
35
43
.10.1016/j.enconman.2019.02.007
16.
Ngugi
,
J. M.
,
Richter
,
S.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2020
, “
An Investigation of Fundamental Combustion Properties of the Oxygenated Fuels DME and OME1
,”
ASME
Paper No. GT2020-14702.10.1115/GT2020-14702
17.
Drost
,
S.
,
Schießl
,
R.
,
Werler
,
M.
,
Sommerer
,
J.
, and
Maas
,
U.
,
2019
, “
Ignition Delay Times of Polyoxymethylene Dimethyl Ether Fuels (OME2 and OME3) and Air: Measurements in a Rapid Compression Machine
,”
Fuel
,
258
, p.
116070
.10.1016/j.fuel.2019.116070
18.
He
,
T.
,
Wang
,
Z.
,
You
,
X.
,
Liu
,
H.
,
Wang
,
Y.
,
Li
,
X.
, and
He
,
X.
,
2018
, “
A Chemical Kinetic Mechanism for the Low-and Intermediate-Temperature Combustion of Polyoxymethylene Dimethyl Ether 3 (PODE3)
,”
Fuel
,
212
, pp.
223
235
.10.1016/j.fuel.2017.09.080
19.
Eckart
,
S.
,
Cai
,
L.
,
Fritsche
,
C.
,
Vom Lehn
,
F.
,
Pitsch
,
H.
, and
Krause
,
H.
,
2021
, “
Laminar Burning Velocities, CO and NOx Emissions of Premixed Polyoxymethylene Dimethyl Ether Flames
,”
Fuel
,
293
, p.
120321
.10.1016/j.fuel.2021.120321
20.
Sun
,
W.
,
Wang
,
G.
,
Li
,
S.
,
Zhang
,
R.
,
Yang
,
B.
,
Yang
,
J.
,
Li
,
Y.
,
Westbrook
,
C. K.
, and
Law
,
C. K.
, and
others
,
2017
, “
Speciation and the Laminar Burning Velocities of Poly(Oxymethylene) Dimethyl Ether 3 (POMDME3) Flames: An Experimental and Modeling Study
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1269
1278
.10.1016/j.proci.2016.05.058
21.
Ren
,
S.
,
Wang
,
Z.
,
Li
,
B.
,
Liu
,
H.
, and
Wang
,
J.
,
2019
, “
Development of a Reduced Polyoxymethylene Dimethyl Ethers (PODEn) Mechanism for Engine Applications
,”
Fuel
,
238
, pp.
208
224
.10.1016/j.fuel.2018.10.111
22.
Naumann
,
C.
,
Janzer
,
C.
, and
Riedel
,
U.
,
2019
, “
Ethane/Nitrous Oxide Mixtures as a Green Propellant to Substitute Hydrazine: Validation of Reaction Mechanism
,” Ninth Proceedings European Comb. Meeting, Lisbon, Portugal, Apr. 14–17, Paper No.
S5_AII_21
.https://core.ac.uk/download/pdf/211566337.pdf
23.
Herzler
,
J.
,
Herbst
,
J.
,
Kick
,
T.
,
Naumann
,
C.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2012
, “
Alternative Fuels Based on Biomass: An Investigation on Combustion Properties of Product Gases
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
031401
.10.1115/1.4007817
24.
Methling
,
T.
,
Richter
,
S.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2018
, “
An Investigation of Combustion Properties of Butanol and Its Potential for Power Generation
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
091505
.10.1115/1.4039731
25.
Richter
,
S.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Methling
,
T.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2019
, “
An Investigation of Combustion Properties of a Gasoline Primary Reference Fuel Surrogate Blended With Butanol
,”
ASME
Paper No. GT2019-90911.10.1115/GT2019-90911
26.
Herzler
,
J.
, and
Naumann
,
C.
,
2008
, “
Shock Tube Study of the Ignition of Lean CO/H2 Fuel Blends at Intermediate Temperatures and High Pressure
,”
Comb. Sci. Technol.
,
180
(
10–11
), pp.
2015
2028
.10.1080/00102200802269715
27.
Richter
,
S.
,
Kathrotia
,
T.
,
Naumann
,
C.
,
Kick
,
T.
,
Slavinskaya
,
N.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2018
, “
Experimental and Modeling Study of Farnesane
,”
Fuel
,
215
, pp.
22
29
.10.1016/j.fuel.2017.10.117
28.
Dagaut
,
P.
,
Karsenty
,
F.
,
Dayma
,
G.
,
Diévart
,
P.
,
Hadj-Ali
,
K.
,
Mzé-Ahmed
,
A.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Kathrotia
,
T.
,
Kick
,
T.
,
Naumann
,
C.
,
Riedel
,
U.
, and
Thomas
,
L.
,
2014
, “
Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) Jet Fuel
,”
Combust. Flame
,
161
(
3
), pp.
835
847
.10.1016/j.combustflame.2013.08.015
29.
Braun-Unkhoff
,
M.
,
Dembowski
,
J.
,
Herzler
,
J.
,
Karle
,
J.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2014
, “
Alternative Fuels Based on Biomass: An Experimental and Modeling Study of Ethanol co-Firing to Natural Gas
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091503
.10.1115/1.4029625
30.
Herzler
,
J.
, and
Naumann
,
C.
,
2009
, “
Shock-Tube Study of the Ignition of Methane/Ethane/Hydrogen Mixtures With Hydrogen Contents From 0% to 100% at Different Pressures
,”
Proc. Comb. Inst.
,
32
(
1
), pp.
213
220
.10.1016/j.proci.2008.07.034
31.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2016
, “
Cantera: An Object- Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, accessed Aug. 30, 2021, https://cantera.org/community.html#citing-cantera
32.
Lutz
,
A. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
,
1988
,
SENKIN: A FORTRAN Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis
,
Sandia National Labs
,
Livermore, CA
, Report No. SAND-87-8248.
33.
Petersen
,
E. L.
,
2009
, “
Interpreting Endwall and Sidewall Measurements in Shock-Tube Ignition Studies
,”
Combust. Sci. Technol.
,
181
(
9
), pp.
1123
1144
.10.1080/00102200902973323
You do not currently have access to this content.