Abstract

This paper presents a new computational fluid dynamics (CFD) approach for the assessment of NOx emission. The methodology is validated against the experimental data of a heavy-duty gas turbine annular combustor. Since the NOx formation involves time scales that are different from the fuel oxidation time, this work defines the transport equation source terms for NOx basis on a dedicated NOx-Damköhler number. The latter parameter allows to properly distinguish the “in-flame” contribution from the “postflame” one. While the former is a mix of several mechanisms (prompt, N2O-pathway, thermal), the latter is dominated by the thermal contribution. The validation phase is developed in a large-eddy simulation (LES) framework where the extended turbulent flame speed model is implemented to consider the influence of both heat loss and strain rate on the progress variable source term. The accuracy of the model against the most important operability parameters of the combustor is verified. A strong focus on the fuel composition effect onto NOx is presented as well. For any simulated operating condition, the present methodology is able to provide a limited percentage error if compared with the data, considering also different combustion regimes. Leveraging this alignment, the last portion of the paper is dedicated to detailed postprocessing highlighting the role of some key factors on NOx formation. In particular, the focus will be dedicated to the impact of the fuel gas composition and the pilot split.

References

1.
IEA
,
2020
, “
Global Energy Review 2019
,” IEA, Paris, France, accessed Aug. 27, 2021, https://www.iea.org/reports/global-energy-review-2019
2.
Peters
,
N.
,
2001
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
3.
Fichet
,
V. F.
,
Kanniche
,
M.
,
Plion
,
P.
, and
Gicquel
,
O.
,
2010
, “
A Reactor Network Model for Predicting NOx Emissions in Gas Turbines
,”
Fuel
,
89
(
9
), pp.
2202
2210
.10.1016/j.fuel.2010.02.010
4.
Eggels
,
R. L. G. M.
,
2001
, “
Modelling of NOx Formation of a Premixed DLE Gas Turbine Combustor
,”
ASME
Paper No. 2001-GT-0069.10.1115/2001-GT-0069
5.
Novosselov
,
I. V.
, and
Malte
,
P. C.
,
2008
, “
Development and Application of an Eight-Step Global Mechanism for CFD and CRN Simulations of Lean-Premixed Combustors
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p. 021502. 10.1115/1.2795787
6.
Wang
,
F.
,
Li
,
P.
,
Zhang
,
J.
,
Mei
,
Z.
,
Mi
,
J.
, and
Wang
,
J.
,
2015
, “
Routes of Formation and Destruction of Nitrogen Oxides in CH4/H2 Jet Flames in a Hot co-Flow
,”
Int. J. Hydrogen Energy
,
40
(
18
), pp.
6228
6242
.10.1016/j.ijhydene.2015.03.047
7.
Schluckner
,
C.
,
Gaber
,
C.
,
Landfahrer
,
M.
,
Demuth
,
M.
, and
Hochenauer
,
C.
,
2020
, “
Fast and Accurate CFD-Model for NOx Emission Prediction During Oxy-Fuel Combustion of Natural Gas Using Detailed Chemical Kinetics
,”
Fuel
,
264
, p.
116841
.10.1016/j.fuel.2019.116841
8.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
326
.10.1080/00102209208947221
9.
Mongia
,
R. K.
,
Tomita
,
E.
,
Hsu
,
F. H.
,
Talbot
,
L.
, and
Dibble
,
R. W.
,
1996
, “
Use of an Optical Probe for Time-Resolved in Situ Measurement of Local Air-to-Fuel Ratio and Extent of Fuel Mixing With Applications to Low NOx Emissions in Premixed Gas Turbines
,”
Int. Symp. Combustion
,
26
(
2
), pp.
2749
2755
.
10.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel–Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flames
,
151
(
1–2
), pp.
274
288
.10.1016/j.combustflame.2007.04.007
11.
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
, and
Goldenberg
,
M.
, 2020, "Gri-Mech," accessed Aug. 27, 2021, http://combustion.berkeley.edu/gri-mech/
12.
Oijen
,
J. A. V.
, and
Goey
,
L. P. H. D.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
13.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2002
, “
Modelling of Premixed Counterflow Flames Using the Flamelet Generated Manifold Method
,”
Combust. Theory Modell.
,
6
(
3
), pp.
463
478
.10.1088/1364-7830/6/3/305
14.
Romano
,
S.
,
Meloni
,
R.
,
Riccio
,
G.
,
Andreini
,
A.
, and
Nassini
,
P. C.
,
2020
, “
Modeling of Natural Gas Composition Effect on Low NOx Burners Operation in Heavy Duty Gas Turbine
,”
ASME
Paper No. GT2020–14575.10.1115/GT2020-14575
15.
Tay-Wo-Chong
,
L.
,
Komarek
,
T.
,
Lenz
,
M. Z.
,
Hirsch
,
J.
, and
Polifke
,
W.
,
2009
, “
Influence of Strain and Heat Loss on Flame Stabilization in a Non-Adiabatic Combustor
,”
Proceedings of the European Combustion Meeting
, Vienna, Austria, Apr. 14–17, pp.
1
6
.https://www.researchgate.net/publication/228521385_Influence_of_strain_and_heat_loss_on_flame_stabilization_in_a_nonadiabatic_combustor
16.
Tay-Wo-Chong
,
L.
,
Scarpato
,
A.
, and
Polifke
,
W.
,
2017
, “
LES Combustion Model With Stretch and Heat Loss Effects for Prediction of Premix Flame Characteristics and Dynamics
,”
ASME
Paper No. GT2017-63357.10.1115/GT2017-63357
17.
Nassini
,
P. C.
,
Pampaloni
,
D.
,
Andreini
,
A.
, and
Meloni
,
R.
,
2019
, “
Large Eddy Simulation of Lean Blow-Off in a Premixed Swirl Stabilized Flame
,”
ASME
Paper No. GT2009-90856.10.1115/GT2019-90856
18.
Andreini
,
A.
,
Pampaloni
,
D.
, and
Nassini
,
P. C.
,
2018
, “
Impact of Stretch and Heat Loss on Flame Stabilization in a Lean Premixed Flame Approaching Blow-Off
,”
Energy Procedia
,
148
, pp.
250
257
.10.1016/j.egypro.2018.08.075
19.
Germano
,
M.
,
Pimelic
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1996
, “
Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Summer Workshop, Center for Turbulence Research
, Stanford, CA.
20.
Zimont
,
V.
,
2000
, “
Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Model Combustion Model
,”
Exp. Therm. Fluid Sci.
,
21
(
1–3
), pp.
179
186
.10.1016/S0894-1777(99)00069-2
21.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Zenodo.
22.
Nassini
,
P. C.
,
Pampaloni
,
D.
, and
Andreini
,
A.
,
2019
, “
Inclusion of Flame Stretch and Heat Loss in LES Combustion Model
,”
AIP Conf. Proc.
,
2191
(
1
), p.
020119
.10.1063/1.5138852
23.
Bradley
,
D.
,
Gaskell
,
P. H.
,
Sedaghat
,
A.
, and
Gu
,
X. J.
,
2003
, “
Generation of PDFS for Flame Curvature and for Flame Stretch Rate in Premixed Turbulent Combustion
,”
Combust. Flame
,
135
(
4
), pp.
503
523
.10.1016/S0010-2180(03)00181-0
24.
Meneveau
,
C.
, and
Poinsot
,
T.
,
1991
, “
Stretching and Quenching of Flamelets in Premixed Turbulent Combustion
,”
Combust. Flame
,
86
(
4
), pp.
311
332
.10.1016/0010-2180(91)90126-V
25.
Vinuesa
,
J. F.
,
Porté-Agel
,
F.
,
Basu
,
S.
, and
Stoll
,
R.
,
2006
, “
Subgrid-Scale Modeling of Reacting Scalar Fluxes in Large-Eddy Simulations of Atmospheric Boundary Layers
,”
Environ. Fluid Mech.
,
6
(
2
), pp.
115
131
.10.1007/s10652-005-6020-9
26.
ANSYS
,
2013
,
Fluent Theory Guide, Release 15.0
,
ANSYS
,
Canonsburg, PA
.
27.
CHEMIKIN PRO,
2013
, “CHEMIKIN PRO 15131, Reaction Design,”
CHEMIKIN PRO
,
San Diego, CA
.
28.
Polifke
,
W.
,
DöBbeling
,
K.
,
Sattelmayer
,
T.
,
Nicol
,
D. G.
, and
Malte
,
P. C.
,
1996
, “
A NOx Prediction Scheme for Lean-Premixed Gas Turbine Combustion Based on Detailed Chemical Kinetics
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
765
772
.10.1115/1.2816992
29.
Lieuwen
,
T.
,
McDonell
,
V. G.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2006
, “
Fuel Flexibility Influences on Premixed Combustor Blowout
,”
ASME
Paper No. GT2006-90770.10.1115/GT2006-90770
30.
Gruhlke
,
P.
,
Mahiques
,
E.
,
Dederichs
,
I.
,
Beck
,
S. C.
, and
Kempf1
,
A. M.
,
2017
, “
Investigation of CO and NOx Formation in a Jet flame
,”
Eighth European Combustion Meeting
, Dubrovnik, Croatia, Apr. 18.
31.
Hanson
,
R. K.
, and
Salimian
,
S.
,
1984
, “
Survey of Rate Constants in H/N/O Systems
,”
Combustion Chemistry
,
W. C.
Gardiner
, ed., Springer, New York, p.
361
.
32.
CeruttiGiannini
,
M.
,
Ceccherini
,
N.
,
Meloni
,
G.
,
Matoni
,
R.
,
Romano
,
E. C.
, and
Riccio
,
G.
,
2018
, “
Dry Low NOx Emissions Operability enhancement of a Heavy-Duty Gas Turbine by Means of Fuel Burner Design Development and Testing
,”
ASME
Paper No. GT2018-76587.10.1115/GT2018-76587
33.
Meloni
,
R.
,
Ceccherini
,
G.
,
Michelassi
,
V.
, and
Riccio
,
G.
,
2019
, “
Analysis of the Self-Excited Dynamics of a Heavy-Duty Annular Combustion Chamber by Large-Eddy Simulation
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111016
.10.1115/1.4044929
34.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large Eddy Simulations of Turbulent Flows
,”
New J. Phys.
,
6
, p.
35
.10.1088/1367-2630/6/1/035
35.
Pope
,
S. B.
,
2011
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
36.
Romano
,
S.
,
Cerutti
,
M.
,
Riccio
,
G.
,
Romano
,
C.
, and
Andreini
,
A.
,
2019
, “
Effect of Natural Gas Composition on Low NOx Burners Operation in Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbine Power
,
141
(
11
), p.
114501
.10.1115/1.4044870
You do not currently have access to this content.