Abstract

Climate science shows that the limitation of global warming requires a rapid transition toward net-zero emissions of green house gases on a global scale. Expanding renewable power generation in a significant way is seen as an imperative measure within this transition. To compensate for the inherent volatility of wind- and solar-based power generation, flexible and dispatchable power generation technologies such as gas turbines are required. If operated with CO2-neutral fuels such as hydrogen or in combination with carbon capture plants, a green house gases-neutral gas turbine operation can be achieved. An effective leverage to enhance carbon capture efficiency and a possible measure to safely burn hydrogen in gas turbines is the partial external recirculation of exhaust gas. By means of a model-based analysis of a state-of-the-art industrial gas turbine, this study initially assesses the thermodynamic impact caused by a fuel switch from natural gas to hydrogen. Although positive trends such as increasing net electrical power output and thermal efficiency can be observed, the overall effect on the gas turbine process is only minor. In a following step, the partial external recirculation of exhaust gas is evaluated and compared both for the combustion of natural gas and hydrogen, regardless of potential combustor design challenges. The influence of altering working fluid properties throughout the whole gas turbine process is thermodynamically evaluated for ambient temperature recirculation and recirculation at an elevated temperature (303.15 K). A reduction in thermal efficiency as well as non-negligible changes in relevant process variables can be observed. These changes are more distinctive at a higher recirculation temperature.

References

1.
Lechner
,
C.
, and
Seume
,
J.
,
2010
,
Stationäre Gasturbinen
, Vol.
2
,
Springer-Verlag
,
Berlin Heidelberg, Germany
.
2.
Kutne
,
P.
,
Bothien
,
M.
,
Breuhaus
,
P.
,
Griebel
,
P.
,
Kaplan
,
B.
,
Laagland
,
G.
, and
Stuttaford
,
P.
,
2020
, “
Hydrogen Gas Turbines
,” ETN Global, Brussels, Belgium, Report.
3.
Stolten
,
D.
, and
Emonts
,
B.
,
2016
,
Hydrogen Science and Engineering
, Vol.
1
,
Wiley-VCH Verlag
,
Weinheim, Germany
.
4.
Chapel
,
D. G.
,
Ernest
,
J.
, and
Mariz
,
C.
,
1999
, “
Recovery of CO2 From Flue Gases: Commercial Trends
,”
Canadian Society of Chemical Engineers Annual Meeting
, Saskatoon, SK, Canada, Oct. 4–6 , pp.
1
16
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.204.8298&rep=rep1&type=pdf#:~:text=It%20can%20recover%2085%2D95,CO2%20product%20(dry%20basis).&text=Coal%2Dderived%20flue%20gases%20usually,a%20typical%2C%20regenerable%20alkanolamine%20process
5.
Bolland
,
O.
, and
Sæther
,
S.
,
1992
, “
New Concepts for Natural Gas-Fired Power Plants Which Simplify the Recovery of Carbon Dioxide
,”
Energy Convers. Manage.
,
33
(
5–8
), pp.
467
475
.10.1016/0196-8904(92)90045-X
6.
Bolland
,
O.
, and
Mathieu
,
P.
,
1998
, “
Comparison of Two CO2 Removal Options in Combined Cycle Power Plants
,”
Energy Convers. Manage.
,
39
(
16–18
), pp.
1653
1663
.10.1016/S0196-8904(98)00078-8
7.
Li
,
H.
,
Haugen
,
G.
,
Ditaranto
,
M.
,
Berstad
,
D.
, and
Jordal
,
K.
,
2011
, “
Impacts of Exhaust Gas Recirculation (EGR) on the Natural Gas Combined Cycle Integrated With Chemical Absorption CO2 Capture Technology
,”
Energy Procedia
,
4
, pp.
1411
1418
.10.1016/j.egypro.2011.02.006
8.
Li
,
H.
,
Ditaranto
,
M.
, and
Berstad
,
D.
,
2011
, “
Technologies for Increasing CO2 Concentration in Exhaust Gas From Natural Gas-Fired Power Production With Post-Combustion, Amine-Based CO2 Capture
,”
Energy
,
36
(
2
), pp.
1124
1133
.10.1016/j.energy.2010.11.037
9.
Jonshagen
,
K.
,
Sipöcz
,
N.
, and
Genrup
,
M.
,
2011
, “
A Novel Approach of Retrofitting a Combined Cycle With Post Combustion CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011703
.10.1115/1.4001988
10.
Evulet
,
A. T.
,
ElKady
,
A. M.
,
Brand
,
A. R.
, and
Chinn
,
D.
,
2009
, “
On the Performance and Operability of GE's Dry Low NOx Combustors Utilizing Exhaust Gas Recirculation for Post-Combustion Carbon Capture
,”
Phys. Procedia
,
1
(
1
), pp.
3809
3816
.10.1016/j.egypro.2009.02.182
11.
ElKady
,
A. M.
,
Evulet
,
A.
,
Brand
,
A.
,
Ursin
,
T. P.
, and
Lynghjem
,
A.
,
2009
, “
Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
034505
.10.1115/1.2982158
12.
Ditaranto
,
M.
,
Li
,
H.
, and
Lovas
,
T.
,
2015
, “
Concept of Hydrogen Fired Gas Turbine Cycle With Exhaust Gas Recirculation: Assessment of Combustion and Emissions Performance
,”
Int. J. Greenhouse Gas Control
,
37
, pp.
377
383
.10.1016/j.ijggc.2015.04.004
13.
Bexten
,
T.
,
Lipperheide
,
M.
,
Wirsum
,
M.
,
Pei
,
L.
, and
Zheng
,
L.
,
2018
, “
A Comparative Study of Data and Physically Based Gas Turbine Modeling for Long-Term Monitoring Scenarios: Part I—Thermodynamic Performance Prediction Without Design Information
,”
ASME
Paper No. GT2018-76630.10.1115/GT2018-76630
14.
Kawasaki Heavy Industries,
2016
, “
Kawasaki Gas Turbine Generator Sets
,” Kawasaki Heavy Industries, Tokyo, Japan, Cat. No. KTK-0001K.
15.
Haglind
,
F.
,
2010
, “
Variable Geometry Gas Turbines for Improving the Part-Load Performance of Marine Combined Cycles-Gas Turbine Performance
,”
Energy
,
35
(
2
), pp.
562
570
.10.1016/j.energy.2009.10.026
16.
Seydel
,
C. G.
,
2014
, “
Thermodynamische Auslegung Und Potentialstudien Von Heavy-Duty Gasturbinen Für Kombinierte Gas- Und Dampfkraftwerke
,” Ph.D. thesis,
TU München
,
Munich, Germany
.
17.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
18.
Winkler
,
D.
,
Griffing
,
T.
,
Ghermay
,
Y.
,
Müller
,
P.
,
Burdet
,
A.
,
Reimer
,
S.
, and
Mantzaras
,
J.
,
2009
, “
Improvement of Gas Turbine Combustion Reactivity Under Flue Gas Recirculation Condition With in-Situ Hydrogen Addition
,”
ASME
Paper No. GT2009-59182.10.1115/GT2009-59182
19.
Winkler
,
D.
,
Reimer
,
S.
,
Müller
,
P.
, and
Griffin
,
T.
,
2010
, “
Comparison of Methane and Natural Gas Combustion Behavior at Gas Turbine Conditions With Flue Gas Recirculation
,”
ASME
Paper No. GT2010-22571.10.1115/GT2010-22571
20.
Sander
,
F.
,
Carroni
,
R.
,
Rofka
,
S.
, and
Benz
,
E.
,
2011
, “
Flue Gas Recirculation in a Gas Turbine: Impact on Performance and Operational Behavior
,”
ASME
Paper No.GT2011-45608.10.1115/GT2011-45608
21.
Therkelsen
,
P.
,
Werts
,
T.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2009
, “
Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p. 031507.10.1115/1.3028232
22.
Gazzani
,
M.
,
Chiesa
,
P.
,
Martelli
,
E.
,
Sigali
,
S.
, and
Brunetti
,
I.
,
2014
, “
Using Hydrogen as Gas Turbine Fuel: Premixed Versus Diffusive Flame Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051504
.10.1115/1.4026085
23.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Sequential Combustion in Gas Turbines: The Key Technology for Burning High Hydrogen Contents With Low Emissions
,”
ASME
Paper No. GT2019-90798.10.1115/GT2019-90798
You do not currently have access to this content.