Abstract

Several combustion strategies leverage radial fuel stratification to adapt cylinder composition between the center of the chamber and the outer regions independently. Spark-assisted compression ignition (SACI) relies on careful tuning of this radial stratification to maximize the combined performance of flame propagation and auto-ignition. Established techniques for determining in-cylinder fuel stratification are computationally intensive, limiting their feasibility for control strategy development and real-time control. A fast running model for radial fuel stratification is developed for control-oriented objectives. The model consists of three submodels: spray penetration, fuel distribution along the spray axis, and postinjection mixing. The spray penetration model is adapted from fuel spray models presented in the literature. The fuel distribution and mixing submodels are validated against injection spray results from an large eddy simulation (LES) three-dimensional (3D) computational fluid dynamics (CFD) reference model for three test points as a function of crank angle. The quasi-dimensional model matches the CFD results with a root-mean-square error (RMSE) for equivalence ratio of 0.08–0.11. This is a 50% reduction from the 0.16–0.20 RMSE for a model that assumes a uniform fuel distribution immediately after injection. The computation time is 230 ms on an Intel (Santa Clara, CA) Xeon E5-1620 v3 to solve each case without optimizing the code for execution speed.

References

1.
Onishi
,
S.
,
Jo
,
S. H.
,
Shoda
,
K.
,
Jo
,
P. D.
, and
Kato
,
S.
,
1979
, “
Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines
,”
SAE
Paper No. 790501. 10.4271/790501
2.
Noguchi
,
M.
,
Tanaka
,
Y.
,
Tanaka
,
T.
, and
Takeuchi
,
Y.
,
1979
, “
A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion
,”
SAE
Paper No. 790840.10.4271/790840
3.
Najt
,
P.
, and
Foster
,
D. E.
,
1983
, “
Compression-Ignited Homogeneous Charge Combustion
,”
SAE
Paper No. 830264.10.4271/830264
4.
Thring
,
R. H.
,
1989
, “
Homogeneous Charge Compression Ignition (HCCI) Engines: A Review
,”
SAE
Paper No. 892068.10.4271/892068
5.
Zhao
,
F.
,
Asmus
,
T.
,
Assanis
,
D.
,
Dec
,
J.
,
Eng
,
J. A.
, and
Najt
,
P. M.
,
2003
,
Homogeneous Charge Compression Ignition (HCCI) Engines
,
SAE
,
Warrendale, PA
.
6.
Dec
,
J.
,
Dernotte
,
J.
, and
Ji
,
C.
,
2017
, “
Increasing the Load Range, Load-to-Boost Ratio, and Efficiency of Low-Temperature Gasoline Combustion (LTGC) Engines
,”
SAE Int. J. Engines
,
10
(
3
), pp.
1256
1274
.10.4271/2017-01-0731
7.
Güralp
,
O.
,
Hoffman
,
M.
,
Assanis
,
D. N.
,
Filipi
,
Z.
,
Kuo
,
T. W.
,
Najt
,
P.
, and
Rask
,
R.
,
2006
, “
Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine
,”
SAE
Paper No. 2006-01-3277.10.4271/2006-01-3277
8.
Hoffman
,
M.
,
O'Donnell
,
R.
, and
Filipi
,
Z.
,
2018
, “
Partial Transparency of Advanced Compression Ignition Combustion Chamber Deposits, Its Impact on Combustion Chamber Wall Temperatures and Application to Thermal Barrier Coating Design
,”
SAE Int. J. Engines
,
11
(
2
), pp.
179
194
.10.4271/03-11-02-0012
9.
Hoffman
,
M. A.
, and
Filipi
,
Z.
,
2015
, “
Influence of Directly Injected Gasoline and Porosity Fraction on the Thermal Properties of HCCI Combustion Chamber Deposits
,”
SAE
Paper No. 2015-24-2449.10.4271/2015-24-2449
10.
Bunce
,
M.
, and
Blaxill
,
H.
,
2014
, “
Methodology for Combustion Analysis of a Spark Ignition Engine Incorporating a Pre-Chamber Combustor
,”
SAE
Paper No. 2014-01-2603.10.4271/2014-01-2603
11.
Dec
,
J. E.
,
Yang
,
Y.
,
Dernotte
,
J.
, and
Ji
,
C.
,
2015
, “
Effects of Gasoline Reactivity and Ethanol Content on Boosted, Premixed and Partially Stratified Low-Temperature Gasoline Combustion (LTGC)
,”
SAE Int. J. Engines
,
8
(
3
), pp.
935
955
.10.4271/2015-01-0813
12.
Lawler
,
B.
,
Mamalis
,
S.
,
Joshi
,
S.
,
Lacey
,
J.
,
Guralp
,
O.
,
Najt
,
P.
, and
Filipi
,
Z.
,
2017
, “
Understanding the Effect of Operating Conditions on Thermal Stratification and Heat Release in a Homogeneous Charge Compression Ignition Engine
,”
Appl. Therm. Eng.
,
112
, pp.
392
402
.10.1016/j.applthermaleng.2016.10.056
13.
Sofianopoulos
,
A.
,
Rahimi Boldaji
,
M.
,
Lawler
,
B.
, and
Mamalis
,
S.
,
2018
, “
Analysis of Thermal Stratification Effects in HCCI Engines Using Large Eddy Simulations and Detailed Chemical Kinetics
,”
SAE
Paper No. 2018-01-0189.10.4271/2018-01-0189
14.
Urushihara
,
T.
,
Yamaguchi
,
K.
,
Yoshizawa
,
K.
, and
Itoh
,
T.
,
2005
, “
A Study of a Gasoline-Fueled Compression Ignition Engine ∼ Expansion of HCCI Operation Range Using SI Combustion as a Trigger of Compression Ignition
,”
SAE
Paper No. 2005-01-0180.10.4271/2005-01-0180
15.
Chiodi
,
M.
,
Kaechele
,
A.
,
Bargende
,
M.
,
Wichelhaus
,
D.
, and
Poetsch
,
C.
,
2017
, “
Development of an Innovative Combustion Process
,”
SAE Int. J. Engines
,
10
(
5
), pp.
2486
2499
.10.4271/2017-24-0147
16.
Vent
,
G.
,
Enderle
,
C.
,
Merdes
,
N.
,
Kreitmann
,
F.
, and
Weller
,
R.
,
2012
, “
The New 2.0 L Turbo Engine From the Mercedes- Benz 4-Cylinder Engine Family
,” 21st Aachen Colloquium Automobile and Engine Technology, Aachen, Germany, pp.
137
159
.https://www.semanticscholar.org/paper/The-new-2.0l-turbo-engine-from-the-Mercedes-Benz-Vent-Enderle/1ae00a589abfd471dd064da7e3c113a04ab3eda6
17.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
18.
Xu
,
C.
,
Pal
,
P.
,
Ren
,
X.
,
Sjöberg
,
M.
,
Van Dam
,
N.
,
Wu
,
Y.
,
Lu
,
T.
,
McNenly
,
M.
, and
Som
,
S.
,
2021
, “
Numerical Investigation of Fuel Property Effects on Mixed-Mode Combustion in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), pp.
1
13
.10.1115/1.4048242
19.
Grenda
,
J. M.
,
2005
, “
Numerical Modeling of Charge Stratification for the Combustion Control of HCCI Engines
,”
SAE
Paper No. 2005-01-3722.10.4271/2005-01-3722
20.
Nishida
,
K.
, and
Hiroyasu
,
H.
,
1989
, “
Simplified Three-Dimensional Modeling of Mixture Formation and Combustion in a D.I. Diesel Engine
,”
SAE
Paper No. 890269.10.4271/890269
21.
Sjöberg
,
M.
,
Dec
,
J. E.
, and
Cernansky
,
N. P.
,
2005
, “
Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments
,”
SAE
Paper No. 2005-01-0113.10.4271/2005-01-0113
22.
Priyadarshini
,
P.
,
Sofianopoulos
,
A.
,
Mamalis
,
S.
,
Lawler
,
B.
,
Lopez-Pintor
,
D.
, and
Dec
,
J. E.
,
2020
, “
Understanding Partial Fuel Stratification for Low Temperature Gasoline Combustion Using Large Eddy Simulations
,”
Int. J. Engine Res.
, ePub.10.1177/1468087420921042
23.
Pomraning
,
E.
, and
Rutland
,
C. J.
,
2002
, “
Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model
,”
AIAA J.
,
40
(
4
), pp.
689
701
.10.2514/2.1701
24.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2019
, “CONVERGE 3.0,” Convergent Science,
Madison, WI
.
25.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
McDavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Paper No. 2003-01-1043.10.4271/2003-01-1043
26.
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.10.1243/146808705X30503
27.
Werner
,
H.
, and
Wengle
,
H.
,
1993
, “
Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel
,”
Turbulent Shear Flows 8
, Springer, Berlin, Heidelberg.10.1007/978-3-642-77674-8_12
28.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,”
SAE
Paper No. 2000-01-0271.10.4271/2000-01-0271
29.
Nakai
,
E.
,
Goto
,
T.
,
Ezumi
,
K.
,
Tsumura
,
Y.
,
Endou
,
K.
,
Kanda
,
Y.
,
Urushihara
,
T.
,
Sueoka
,
M.
, and
Hitomi
,
M.
,
2019
, “
Mazda SkyActiv-X 2.0 L Gasoline Engine
,” 28th Aachen Colloquium Automobile and Engine Technology, Aachen, Germany, Oct. 7–9, pp.
55
78
.
30.
Desantes
,
J. M.
,
Payri
,
R.
,
Salvador
,
F. J.
, and
Gil
,
A.
,
2006
, “
Development and Validation of a Theoretical Model for Diesel Spray Penetration
,”
Fuel
,
85
(
7–8
), pp.
910
917
.10.1016/j.fuel.2005.10.023
31.
Tetrault
,
P.
,
Plamondon
,
E.
,
Breuze
,
M.
,
Hespel
,
C.
,
Mounaïm-Rousselle
,
C.
, and
Seers
,
P.
,
2015
, “
Fuel Spray Tip Penetration Model for Double Injection Strategy
,”
SAE
Paper No. 2015-01-0934.10.4271/2015-01-0934
32.
Taglialatela Scafati
,
F.
,
Pirozzi
,
F.
,
Cannavacciuolo
,
S.
,
Allocca
,
L.
, and
Montanaro
,
A.
,
2015
, “
Real Time Control of GDI Fuel Injection During Ballistic Operation Mode
,”
SAE
Paper No. 2015-24-2428.10.4271/2015-24-2428
33.
Skiba
,
S.
, and
Melbert
,
J.
,
2012
, “
Dosing Performance of Piezo Injectors and Sensorless Closed-Loop Controlled Solenoid Injectors for Gasoline Direct Injection
,”
SAE Int. J. Engines
,
5
(
2
), pp.
330
335
.10.4271/2012-01-0394
34.
Perini
,
F.
,
Dempsey
,
A.
,
Reitz
,
R. D.
,
Sahoo
,
D.
,
Petersen
,
B.
, and
Miles
,
P. C.
,
2013
, “
A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine
,”
SAE
Paper No. 2013-01-1105.10.4271/2013-01-1105
35.
Zhang
,
Y.
,
Pei
,
Y.
,
Engineer
,
N.
,
Cho
,
K.
, and
Cleary
,
D.
,
2017
, “
CFD-Guided Combustion Strategy Development for a Higher Reactivity Gasoline in a Light-Duty Gasoline Compression Ignition Engine
,”
SAE
Paper No. 2017-01-0740.10.4271/2017-01-0740
36.
Sellnau
,
M.
,
Foster
,
M.
,
Hoyer
,
K.
,
Moore
,
W.
,
Sinnamon
,
J.
, and
Husted
,
H.
,
2014
, “
Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine
,”
SAE Int. J. Engines
,
7
(
2
), pp.
835
851
.10.4271/2014-01-1300
37.
Giovannoni
,
N.
,
Breda
,
S.
,
Paltrinieri
,
S.
,
D'Adamo
,
A.
,
Fontanesi
,
S.
, and
Pulvirenti
,
F.
,
2015
, “
CFD Analysis of the Effects of Fuel Composition and Injection Strategy on Mixture Preparation and Fuel Deposit Formation in a GDI Engine
,”
SAE
Paper No. 2015-24-2408.10.4271/2015-24-2408
38.
Buri
,
S.
,
Kubach
,
H.
, and
Spicher
,
U.
,
2010
, “
Effects of Increased Injection Pressures of Up to 1000 Bar—Opportunities in Stratified Operation in a Direct-Injection Spark-Ignition Engine
,”
Int. J. Engine Res.
,
11
(
6
), pp.
473
484
.10.1243/14680874JER608
39.
Chen
,
M.
,
Zhang
,
W.
,
Zhang
,
X.
, and
Ding
,
N.
,
2011
, “
In-Cylinder CFD Simulation of a New 2.0 L Turbo Charged GDI Engine
,”
SAE
Paper No. 2011-01-0826.10.4271/2011-01-0826
40.
Dong
,
Z.
,
Shuai
,
S.
,
Wang
,
Z.
, and
Zhao
,
H.
,
2016
, “
CFD Modeling of Mixture Preparation and Soot Formation in a Downsized Gasoline Direct Injection Engine
,”
SAE
Paper No. 2016-01-0586.10.4271/2016-01-0586
You do not currently have access to this content.