Abstract

Reynolds-averaged Navier–Stokes (RANS) model-based conjugate heat transfer (CHT) method is so far popularly used in simulations and designs of internally cooled gas turbine blades. One of the important factors influencing the RANS-based CHT method's prediction accuracy is the choice of turbulence models for different fluid regions because the blade passage flow and internal cooling have considerably different flow features. However, most studies in the open literature adopted the same turbulence models in the blade passage flow and internal cooling. Another important issue is the comprehensive evaluation of the losses caused by the flow and heat transfer for both fluid and solid regions. In this study, a RANS-based CHT solver suitable for subsonic/transonic flows was developed based on OpenFOAM and then validated and used to explore suitable RANS turbulence model combinations for internally cooled gas turbine blades. Entropy generation, being able to weigh the losses caused by both flow friction and heat transfer, was used in the analyses of two vanes with smooth and ribbed cooling ducts to reveal the loss mechanisms. Findings indicate that the combination of the k–ω SST–γ–Reθ transition model for passage flow and the standard k–ε model for internal cooling provided the best agreement with measurement data. The relative error of vane surface dimensionless temperature was less than 3%. The variations of entropy generation with different internal cooling inlet velocities and temperatures indicate that reducing entropy generation was contradictory with enhancing heat transfer performance. This study, which provides a reliable computing tool and a comprehensive performance parameter, has an important application value for the design of advanced internally cooled gas turbine blades.

References

1.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME
Paper No. GT2017-63205. 10.1115/GT2017-63205
2.
Duchaine
,
F.
,
Maheu
,
N.
,
Moureau
,
V.
,
Balarac
,
G.
, and
Moreau
,
S.
,
2014
, “
Large-Eddy Simulation and Conjugate Heat Transfer Around a low-Mach Turbine Blade
,”
ASME J. Turbomach.
,
136
(
5
), p.
051015
.10.1115/1.4025165
3.
Dong
,
P.
, and
Amano
,
R. S.
,
2017
, “
High-Pressure Gas Turbine Vane Turbulent Flows and Heat Transfer Predicted by RANS/LES/DES
,”
ASME
Paper No. GT2017-63032.10.1115/GT2017-63032
4.
Mangani
,
L.
,
Cerutti
,
M.
,
Maritano
,
M.
, and
Martin
,
S.
,
2010
, “
Conjugate Heat Transfer Analysis of NASA C3X Film Cooled Vane With an Object-Oriented CFD Code
,”
ASME
Paper No. GT2010-23458.10.1115/GT2010-23458
5.
Zheng
,
S. F.
,
Song
,
Y. D.
,
Xie
,
G. N.
, and
Sunden
,
B.
,
2015
, “
An Assessment of Turbulence Models for Prediction of Conjugate Heat Transfer for a Turbine Vane With Internal Cooling Channels
,”
Heat Trans. Res.
,
46
(
11
), pp.
1039
1064
.10.1615/HeatTransRes.2015007514
6.
Wang
,
B. X.
,
Zhang
,
W. H.
,
Xie
,
G. N.
,
Xu
,
Y. J.
, and
Xiao
,
M. Y.
,
2015
, “
Multiconfiguration Shape Optimization of Internal Cooling Systems of a Turbine Guide Vane Based on Thermomechanical and Conjugate Heat Transfer Analysis
,”
ASME J. Heat Trans.
,
137
(
6
), p.
061004
.10.1115/1.4029852
7.
Ho
,
K. S.
,
Liu
,
J. S.
,
Elliott
,
T.
, and
Aguilar
,
B.
,
2016
, “
Conjugate Heat Transfer Analysis for Gas Turbine Film-Cooled Blade
,”
ASME
Paper No. GT2016-56688.10.1115/GT2016-56688
8.
Mousavi
,
S. M.
,
Nejat
,
A.
, and
Kowsary
,
F.
,
2017
, “
Optimization of Turbine Blade Cooling With the Aim of Overall Turbine Performance Enhancement
,”
Energy Equip. Syst.
,
5
(
1
), pp.
71
83
.10.22059/EES.2017.24723
9.
Horiuchi
,
T.
,
Taniguchi
,
T.
,
Tanaka
,
R.
,
Ryu
,
M.
, and
Kazari
,
M.
,
2018
, “
Application of Conjugate Heat Transfer Analysis to Improvement of Cooled Turbine Vane and Blade for Industrial Gas Turbine
,”
ASME
Paper No. GT2018-75669.10.1115/GT2018-75669
10.
Shui
,
L. Q.
,
Gao
,
J. M.
,
Xu
,
L.
, and
Wang
,
X. J.
,
2010
, “
Numerical Investigation of Heat Transfer and Flow Characteristics in a Steam-Cooled Square Ribbed Duct
,”
ASME
Paper No. GT2010-22407.10.1115/GT2010-22407
11.
Kan
,
R.
,
Yang
,
L.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2013
, “
Effect of Rib Configuration and Lateral Ejection on a High Aspect Ratio Trailing Edge Channel
,”
ASME
Paper No. GT2013-94549.10.1115/GT2013-94549
12.
Keshmiri
,
A.
,
Osman
,
K.
,
Benhamadouche
,
S.
, and
Shokri
,
N.
,
2016
, “
Assessment of Advanced RANS Models Against Large Eddy Simulation and Experimental Data in the Investigation of Ribbed Passages With Passive Heat Transfer
,”
Numer. Heat Transfer, Part B: Fundam.
,
69
(
2
), pp.
96
110
.10.1080/10407790.2015.1096641
13.
Ko
,
T. H.
,
2006
, “
A Numerical Study on Entropy Generation and Optimization for Laminar Forced Convection in a Rectangular Curved Duct With Longitudinal Ribs
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1113
1125
.10.1016/j.ijthermalsci.2006.03.003
14.
Javadi
,
P.
,
Rashidi
,
S.
, and
Esfahani
,
J. A.
,
2017
, “
Effects of Rib Shapes on the Entropy Generation in a Ribbed Duct
,”
J. Thermophys. Heat Transfer
,
32
(
3
), pp.
391
701
.10.2514/1.T5298
15.
Natalini
,
G.
, and
Sciubba
,
E.
,
1999
, “
Minimization of the Local Rates of Entropy Production in the Design of Air-Cooled Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
466
475
.10.1115/1.2818496
16.
Zeinalpour
,
M.
,
Mazaheri
,
K.
, and
Kiani
,
K. C.
,
2016
, “
A Coupled Adjoint Formulation for Non-Cooled and Internally Cooled Turbine Blade Optimization
,”
Appl. Therm. Eng.
,
105
(
1
), pp.
327
335
.10.1016/j.applthermaleng.2016.05.152
17.
Farrell
,
P. E.
, and
Maddison
,
J. R.
,
2011
, “
Conservative Interpolation Between Volume Meshes by Local Galerkin Projection
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
1–4
), pp.
89
100
.10.1016/j.cma.2010.07.015
18.
Han
,
J. C.
,
Park
,
J. S.
, and
Ibrahim
,
M. Y.
,
1986
, “
Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters
,” NASA, Washington, DC, NASA Report No.
4015
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a174199.pdf
19.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a spinning disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
20.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
,
1995
, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—II. Thermal Field Calculations
,”
Int. J. Heat Mass Transfer
,
38
(
8
), pp.
1467
1481
.10.1016/0017-9310(94)00252-Q
21.
Roache
,
P. J.
,
1998
, “
Verification and Validation in Computational Science and Engineering
,”
Hermosa Publishers
,
Albuquerque, NM
.
22.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
23.
Menter
,
F.
,
Ferreira
,
J. C.
,
Esch
,
T.
, and
Konno
,
B.
,
2003
, “
The SST Turbulence Model With Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines
,” Proceedings of the International Gas Turbine Congress 2003,
Tokyo, Japan
, Nov. 2–7, Paper No.
IGTC-2003-TS-059
.https://www.researchgate.net/publication/305083505_The_SST_turbulence_model_with_improved_wall_treatment_for_heat_transfer_predictions_in_gas_turbines
24.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer
, Vol. 4,
Hanjalic
,
K.
,
Nagano
,
Y.
, and
Tummers
,
M.
eds.,
Begell House, Inc
.,
Danbury, CT
, pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
25.
Marocco
,
L.
, and
Franco
,
A.
,
2017
, “
Direct Numerical Simulation and RANS Comparison of Turbulent Convective Heat Transfer in a Staggered Ribbed Channel With High Blockage
,”
ASME J. Heat Transfer
,
139
(
2
), p.
021701
.10.1115/1.4034774
26.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA Lewis Research Center, Cleveland, OH, NASA Report No.
168015
. https://ui.adsabs.harvard.edu/abs/1983dda..rept.....H/abstract
27.
Dong
,
P.
,
2009
, “
Research on Conjugate Heat Transfer Simulation of Aeroturbine Engine Air-Cooled Vane
,” Ph.D. thesis,
Harbin Institute of Technology
,
Harbin, China
.
28.
Liu
,
W.
,
Wen
,
F. B.
,
Luo
,
L.
,
Tao
,
C.
, and
Wang
,
S. T.
,
2018
, “
Three-Dimensional Aerodynamic Optimization of Turbine Blade Profile Considering Heat Transfer Performance
,”
ASME
Paper No. GT2018-77252.10.1115/GT2018-77252
29.
Facchini
,
B.
,
Bianchini
,
C.
, and
Mangani
,
L.
,
2009
, “
Conjugate Heat Transfer Analysis of an Internally Cooled Turbine Blades With an Object Oriented CFD Code
,”
European Turbomachinery Congress
, Graz, Austria, Mar.
23
27
.https://www.researchgate.net/publication/262723006_Conjugate_heat_transfer_analysis_of_an_internally_cooled_turbine_blades_with_an_object_oriented_cfd_code
30.
Mazaheri
,
K.
,
Zeinalpour
,
M.
, and
Bokaei
,
H. R.
,
2016
, “
Turbine Blade Cooling Passages Optimization Using Reduced Conjugate Heat Transfer Methodology
,”
Appl. Therm. Eng.
,
103
(
5
), pp.
1228
1236
.10.1016/j.applthermaleng.2016.05.007
You do not currently have access to this content.