Abstract

Fuel and load flexibility have been increasingly important features of industrial gas turbines in order to meet the demand for increased utilization of renewable fuels and to provide a way to balance the grid fluctuations due to the unsteady supply of wind and solar power. Experimental investigations were performed using a standard third-generation dry low emission (DLE) burner under atmospheric pressure conditions to study the effect of central and pilot fuel addition, load variations, and hydrogen (H2) enrichment in a natural gas (NG) flame. High-speed kHz planar laser-induced fluorescence (PLIF) of OH radicals and imaging of OH chemiluminescence were employed to investigate the flame stabilization, flame turbulence interactions, and flame dynamics. Along with the optical measurements, combustion emissions were also recorded to observe the effect of changing operating conditions on NOX level. The burner is used in Siemens industrial gas turbines SGT-600, SGT-700, and SGT-800 with minor hardware differences and the study thus is a step to characterize fuel and load flexibility for these turbines. Without pilot and central fuel injections in the current burner configuration, the main flame is stabilized creating a central recirculation zone (CRZ). Addition of the pilot fuel strengthens the outer recirculation zone (ORZ) and moves the flame anchoring position slightly downstream, whereas the flame moves upstream without affecting the ORZ when central fuel injection is added. The flame was investigated utilizing H2/NG fuel mixtures where the H2 amount was changed from 0 to 100%. The results show that the characteristics of the flames are clearly affected by the addition of H2 and by the load variations. The flame becomes more compact, the anchoring position moves closer to the burner exit and the OH signal distribution becomes more distinct for H2 addition due to increased reaction rate, diffusivity, and laminar burning velocity. Changing the load from part to base, similar trends were observed in the flame behavior but in this case due to the higher heat release because of increased turbulence intensity.

References

1.
Warnatz
,
J.
,
Maas
,
P.-D.
, and
Dibble
,
R. W.
,
1996
,
Formation of Nitric Oxides Combustion
.
Springer, Berlin
, pp.
219
236
.
2.
Michaud
,
M. G.
,
Westmoreland
,
P. R.
, and
Feitelberg
,
A. S.
,
1992
, “
Chemical Mechanisms of NOx Formation for Gas Turbine Conditions
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
879
887
.10.1016/S0082-0784(06)80105-0
3.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, American Institute of
Astronautics and Aeronautics
, Reston, VA.
4.
Gussak
,
L. A.
,
Ryabikov
,
O. B.
,
Politenkova
,
G. G.
, and
Furman
,
G. A.
,
1973
, “
Effect of Adding Individual Combustion Products on Combustion of Methane—Air Mixture
,”
Bull. Acad. Sci. USSR, Div. Chem. Sci.
,
22
(
9
), pp.
2128
2128
.10.1007/BF00929436
5.
Lefebvre
,
A. H.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
.
6.
Kreutz
,
T.
,
Williams
,
R.
,
Socolow
,
R.
,
Chiesa
,
P.
, and
Lozza
,
G.
,
2003
, “
Production of Hydrogen and Electricity From Coal With CO2 Capture
,”
Greenhouse Gas Control Technologies-Sixth International Conference
,
Kyoto, Japan
, Oct. 1–4, pp.
141
147
.10.1016/B978-008044276-1/50023-4
7.
Gazzani
,
M.
,
Chiesa
,
P.
,
Martelli
,
E.
,
Sigali
,
S.
, and
Brunetti
,
I.
,
2014
, “
Using Hydrogen as Gas Turbine Fuel: Premixed Versus Diffusive Flame Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051504
.10.1115/1.4026085
8.
Schefer
,
R. W.
,
Wicksall
,
D.
, and
Agrawal
,
A.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.10.1016/S1540-7489(02)80108-0
9.
Dong
,
C.
,
Zhou
,
Q.
,
Zhang
,
X.
,
Zhao
,
Q.
,
Xu
,
T.
, and
Hui
,
S.
,
2010
, “
Experimental Study on the Laminar Flame Speed of Hydrogen/Natural Gas/Air Mixtures
,”
Front. Chem. Eng. China
,
4
(
4
), pp.
417
422
.10.1007/s11705-010-0515-8
10.
Brower
,
M.
,
Petersen
,
E. L.
,
Metcalfe
,
W.
,
Curran
,
H. J.
,
Füri
,
M.
,
Bourque
,
G.
,
Aluri
,
N.
, and
Güthe
,
F.
,
2013
, “
Ignition Delay Time and Laminar Flame Speed Calculations for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021504
.10.1115/1.4007763
11.
Venkateswaran
,
P.
,
Marshall
,
A. D.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Turbulent Consumption Speeds of High Hydrogen Content Fuels From 1–20 Atm
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011504
.10.1115/1.4025210
12.
Guiberti
,
T. F.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.10.1016/j.proci.2014.06.016
13.
Griebel
,
P.
,
Boschek
,
E.
, and
Jansohn
,
P.
,
2007
, “
Lean Blowout Limits and NOx Emissions of Turbulent, Lean Premixed, Hydrogen-Enriched Methane/Air Flames at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
404
410
.10.1115/1.2436568
14.
Hawkes
,
E. R.
, and
Chen
,
J. H.
,
2004
, “
Direct Numerical Simulation of Hydrogen-Enriched Lean Premixed Methane–Air Flames
,”
Combust. Flame
,
138
(
3
), pp.
242
258
.10.1016/j.combustflame.2004.04.010
15.
Lam
,
K.-K.
, and
Parsania
,
N.
,
2016
, “
Hydrogen Enriched Combustion Testing of Siemens SGT-400 at High Pressure Conditions
,”
ASME
Paper No. GT2016-57470.10.1115/GT2016-57470
16.
DöBbeling
,
K.
,
Hellat
,
J.
, and
Koch
,
H.
,
2005
, “
25 Years of BBC/ABB/ALSTOM Lean Premix Combustion Technologies
,”
ASME
Paper No. GT2005-68269.10.1115/GT2005-68269
17.
Lantz
,
A.
,
Collin
,
R.
,
Aldén
,
M.
,
Lindholm
,
A.
,
Larfeldt
,
J.
, and
Lörstad
,
D.
,
2015
, “
Investigation of Hydrogen Enriched Natural Gas Flames in a SGT-700/800 Burner Using OH PLIF and Chemiluminescence Imaging
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031505
.10.1115/1.4028462
18.
Lörstad
,
D.
,
Lindholm
,
A.
,
Barhaghi
,
D. G.
,
Bonaldo
,
A.
,
Fedina
,
E.
, and
Fureby
,
C.
,
2012
, “
Measurements and LES of a SGT-800 Burner in a Combustion Rig
,”
ASME
Paper No. GT2012-69936. 10.1115/GT2012-69936
19.
Lörstad
,
D.
,
Lindholm
,
A.
,
Pettersson
,
J.
,
Björkman
,
M.
, and
Hultmark
,
I.
, “
Siemens SGT-800 Industrial Gas Turbine Enhanced to 50 MW: Combustor Design Modifications, Validation and Operation Experience
,”
ASME
Paper No. GT2013-95478.10.1115/GT2013-95478
20.
Moëll
,
D.
,
Lörstad
,
D.
, and
Bai
,
X.-S.
,
2016
, “
Numerical Investigation of Methane/Hydrogen/Air Partially Premixed Flames in the SGT-800 Burner Fitted to a Combustion Rig
,”
Flow, Turbul. Combust.
,
96
(
4
), pp.
987
1003
.10.1007/s10494-016-9726-5
21.
Lörstad
,
D.
,
Lindholm
,
A.
,
Alin
,
N.
,
Fureby
,
C.
,
Lantz
,
A.
, and
Collin
,
R.
,
2010
, “
Experimental and LES Investigation of a SGT-800 Burner in a Combustion Rig
,”
ASME
Paper No. GT2010-22688.10.1115/GT2010-22688
22.
Moëll
,
D.
,
Lantz
,
A.
,
Bengtson
,
K.
,
Lörstad
,
D.
,
Lindholm
,
A.
, and
Bai
,
X.-S.
,
2019
, “
Large Eddy Simulation and Experimental Analysis of Combustion Dynamics in a Gas Turbine Burner
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071015
.10.1115/1.4042473
23.
Bechtel
,
J.
, and
Teets
,
R.
,
1979
, “
Hydroxyl and Its Concentration Profile in Methane-Air Flames
,”
Appl. Opt.
,
18
(
24
), pp.
4138
4144
.10.1364/AO.18.004138
24.
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2008
, “
Simultaneous OH-PLIF and PIV Measurements in a Gas Turbine Model Combustor
,”
Appl. Phys. B Lasers Opt.
,
90
(
3–4
), pp.
609
618
.10.1007/s00340-007-2928-8
25.
Donbar
,
J. M.
,
Driscoll
,
J. F.
, and
Carter
,
C. D.
,
2000
, “
Reaction Zone Structure in Turbulent Nonpremixed Jet Flames—From CH-OH PLIF Images
,”
Combust. Flame
,
122
(
1–2
), pp.
1
19
.10.1016/S0010-2180(00)00098-5
26.
Hellat
,
J.
, and
Koch
,
H.
,
2007
, “
25 Years of BBC/ABB/Alstom Lean Premix Combustion Technologies
,”
ASME J. Eng. Gas Turbines Power
, 129(1), pp. 2–12.10.1115/1.2181183
27.
Coffee
,
T. P.
,
1984
, “
Kinetic Mechanisms for Premixed, Laminar, Steady State Methane/Air Flames
,”
Combust. Flame
,
55
(
2
), pp.
161
70
.10.1016/0010-2180(84)90024-5
28.
Iudiciani
,
P.
,
Duwig
,
C.
,
Husseini
,
S. M.
,
Szasz
,
R. Z.
,
Fuchs
,
L.
, and
Gutmark
,
E. J.
,
2012
, “
Proper Orthogonal Decomposition for Experimental Investigation of Flame Instabilities
,”
AIAA J.
,
50
(
9
), pp.
1843
1854
.10.2514/1.J051297
29.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
30.
Smith
,
T. R.
,
Moehlis
,
J.
, and
Holmes
,
P.
,
2005
, “
Low-Dimensional Modelling of Turbulence Using the Proper Orthogonal Decomposition: A Tutorial
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
275
307
.10.1007/s11071-005-2823-y
31.
Duwig
,
C.
, and
Iudiciani
,
P.
,
2010
, “
Extended Proper Orthogonal Decomposition for Analysis of Unsteady Flames
,”
Flow, Turbulence Combust.
,
84
(
1
), pp.
25
47
.10.1007/s10494-009-9210-6
32.
Weinberg
,
F. J.
,
1986
,
Advanced Combustion Methods
,
Imperial College of Science and Technology
,
London, UK
.
You do not currently have access to this content.