Abstract

Better understanding and more accurate prediction of heat transfer and cooling flows in aero engine components in steady and transient operating regimes are essential to modern engine designs aiming at reduced cooling air consumption and improved engine efficiencies. This paper presents a simplified coupled transient analysis methodology that allows assessment of the aerothermal and thermomechanical responses of engine components together with cooling air mass flow, pressure and temperature distributions in an automatic fully integrated way. This is achieved by assembling a fluid network with contribution of components of different geometrical dimensions coupled to each other through dimensionally heterogeneous interfaces. More accurate local flow conditions, heat transfer and structural displacement are resolved on a smaller area of interest with multidimensional surface coupled computational fluid dynamics (CFD)/FE codes. Contributions of the whole engine air-system are predicted with a faster monodimensional flow network code. Matching conditions at the common interfaces are enforced at each time-step exactly by employing an efficient iterative scheme. The coupled simulation is performed on an industrial high pressure turbine (HPT) disk component run through a square cycle. Predictions are compared against the available experimental data. The paper proves the reliability and performance of the multidimensional coupling technique in a realistic industrial setting. The results underline the importance of including more physical details into transient thermal modeling of turbine engine components.

References

1.
Kutz
,
K.
, and
Speer
,
T.
,
1994
, “
Simulation of the Secondary Air System of Aero Engines
,”
ASME J. Turbomach.
,
116
(
2
), pp.
306
315
.10.1115/1.2928365
2.
Montenay
,
A.
,
Paté
,
L.
, and
Deboué
,
J.
,
2000
, “
Conjugate Heat Transfer Analysis of an Engine Internal Cavity
,”
ASME
Paper No. 2000-GT-0282.10.1115/2000-GT-0282
3.
Verdicchio
,
J. A.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2001
, “
Coupled Fluid/Solid Heat Transfer Computation for Turbine Discs
,”
ASME
Paper No. 2001-GT-0205.10.1115/2001-GT-0205
4.
Bohn
,
D.
,
Heurer
,
T.
, and
Kusterer
,
K.
,
2003
, “
Conjugate Flow and Heat Transfer Investigation of a Turbo-Charger—Part I: Numerical Results
,”
ASME
Paper No. 2003-GT-38445.10.1115/2003-GT-38445
5.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
van den Braembussche
,
R.
,
2007
, “
Numerical Study of the Heat Transfer in Micro Gas Turbines
,”
ASME J. Turbomach.
,
129
(
4
), pp.
835
841
.10.1115/1.2720874
6.
Okita
,
Y.
, and
Yamawaki
,
S.
,
2002
, “
Conjugate Heat Transfer Analysis of Turbine Rotor-Stator System
,”
ASME
Paper No. 2002-GT-30615.10.1115/2002-GT-30615
7.
Sun
,
Z.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Lewis
,
L.
, and
Mabilat
,
C.
,
2012
, “
Coupled Aerothermomechanical Simulation for a Turbine Disk Through a Full Transient Cycle
,”
ASME J. Turbomach.
,
134
(
1
), p.
011014
.10.1115/1.4003242
8.
Ganine
,
V.
,
Javiya
,
U.
,
Hills
,
N.
, and
Chew
,
J.
,
2012
, “
Coupled Fluid-Structure Transient Thermal Analysis of a Gas Turbine Internal Air System With Multiple Cavities
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102508
.10.1115/1.4007060
9.
Altuna
,
A.
,
Chaquet
,
J.
,
Corral
,
R.
,
Gisbert
,
F.
, and
Pastor
,
G.
,
2013
, “
Application of a Fast Loosely Coupled Fluid/Solid Heat Transfer Method to the Transient Analysis of Low-Pressure-Turbine Disk Cavities
,”
ASME
Paper No. 2013-GT-95426.10.1115/2013-GT-95426
10.
Errera
,
M. P.
,
Lazareff
,
M.
,
Garaud
,
J. D.
,
Soubrie
,
T.
,
Douta
,
C.
, and
Federici
,
T.
,
2017
, “
A Coupling Approach to Modeling Heat Transfer During a Full Transient Flight Cycle
,”
Int. J. Heat Mass Transfer
,
110
, pp.
587
605
.10.1016/j.ijheatmasstransfer.2017.03.048
11.
Maffulli
,
R.
,
He
,
L.
,
Stein
,
P.
, and
Marinescu
,
G.
,
2018
, “
Fast Conjugate Heat Transfer Simulation of Long Transient Flexible Operations Using Adaptive Time Stepping
,”
ASME J. Turbomach.
,
140
(
9
), p.
091005
.10.1115/1.4040997
12.
Amirante
,
D.
,
Hills
,
N.
, and
Barnes
,
C.
,
2012
, “
Thermo-Mechanical Finite Element Anaysis/Computational Fluid Dynamics Coupling of an Interstage Seal Cavity Using Torsional Spring Analogy
,”
ASME J. Turbomach.
,
134
(
5
), p.
051015
.10.1115/1.4004259
13.
Ganine
,
V.
,
Amirante
,
D.
, and
Hills
,
N. J.
,
2016
, “
Aero-Thermo-Mechanical Modelling and Validation of Transient Effects in a High Pressure Turbine Internal Air System
,”
ASME
Paper No. 2016-GT-57739.10.1115/2016-GT-57739
14.
Muller
,
Y.
,
2009
, “
Integrated Fluid Network-Thermomechanical Approach for the Coupled Analysis of a Jet Engine
,”
ASME
Paper No. 2009-GT-59104.10.1115/2009-GT-59104
15.
Giuntini
,
S.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2019
, “
Finite Element Transient Modeling for Aero-Thermo-Mechanical Analysis of Whole Gas Turbine Engine
,”
ASME
Paper No. GT2019-91278.10.1115/GT2019-91278
16.
Ganine
,
V.
,
Hills
,
N.
,
Miller
,
M.
,
Barnes
,
C.
,
Curzons
,
S.
,
Turner
,
L.
, and
Smout
,
P.
,
2015
, “
Implicit Heterogeneous 1D/2D Coupling for Aero-Thermo-Mechanical Simulation of Secondary Air Systems
,”
ASME
Paper No. 2015-GT-43406.10.1115/2015-GT-43406
17.
Mohamed
,
S. N.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2015
, “
Simplified Protrusion Drag and Heat Transfer Modelling of Bolts on a Rotating Disc
,”
ASME
Paper No. 2015-GT-43501.10.1115/2015-GT-43501
18.
Quarteroni
,
A.
,
Veneziani
,
A.
, and
Vergara
,
C.
,
2016
, “
Geometric Multiscale Modeling of the Cardiovascular System, Between Theory and Practice
,”
Comput. Methods Appl. Mech. Eng.
,
302
, pp.
193
252
.10.1016/j.cma.2016.01.007
19.
Formaggia
,
L.
,
Gerbeau
,
J.
,
Nobile
,
F.
, and
Quarteroni
,
A.
,
2002
, “
Numerical Treatment of Defective Boundary Conditions for the Navier–Stokes Equations
,”
SIAM J. Numer. Anal.
,
40
(
1
), pp.
376
401
.10.1137/S003614290038296X
20.
Errera
,
M. P.
, and
Baqué
,
B.
,
2013
, “
A Quasi-Dynamic Procedure for Coupled Thermal Simulations
,”
Int. J. Numer. Methods Fluids
,
72
(
11
), pp.
1183
1206
.10.1002/fld.3782
21.
Giles
,
M.
,
1997
, “
Stability Analysis of Numerical Interface Conditions in Fluid-Structure Thermal Analysis
,”
Int. J. Numer. Methods Fluids
,
25
(
4
), pp.
421
436
.10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J
22.
Roe
,
B.
,
Haselbacher
,
A.
, and
Geubelle
,
P.
,
2007
, “
Stability of Fluid-Structure Thermal Simulations on Moving Grids
,”
Int. J. Numer. Methods Fluids
,
54
(
9
), pp.
1097
1117
.10.1002/fld.1416
23.
Knoll
,
D.
, and
Keyes
,
D.
,
2004
, “
Jacobian-Free Newton–Krylov Methods: A Survey of Approaches and Applications
,”
J. Comput. Phys.
,
193
(
2
), pp.
357
397
.10.1016/j.jcp.2003.08.010
24.
Anderson
,
D.
,
1965
, “
Iterative Procedures for Nonlinear Integral Equations
,”
J. Assoc. Comput. Mach.
,
12
(
4
), pp.
547
560
.10.1145/321296.321305
25.
Ganine
,
V.
,
Hills
,
N. J.
, and
Lapworth
,
B. L.
,
2013
, “
Nonlinear Acceleration of Coupled Fluid-Structure Transient Thermal Problems by Anderson Mixing
,”
Int. J. Numer. Methods Fluids
,
71
(
8
), pp.
939
959
.10.1002/fld.3689
26.
Armstrong
,
I.
, and
Edmunds
,
T.
,
1989
, “
Fully Automatic Analysis in the Industrial Environment
,” International Conference on Quality Assurance and Standards,
Proceedings of Second International Conference on Quality Assurance in Finite Element Analysis
, NAFEMS, Stratford-Upon-Avon, UK, May 22–25.https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/N9110647.xhtml
27.
Dixon
,
J. A.
,
Verdicchio
,
J. A.
,
Benito
,
D.
,
Karl
,
A.
, and
Tham
,
K. M.
,
2004
, “
Recent Developments in Gas Turbine Component Temperature Prediction Methods, Using Computational Fluid Dynamics and Optimization Tools, in Conjunction With More Conventional Finite Element Analysis Techniques
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
4
), pp.
241
255
.10.1243/0957650041200641
28.
Javiya
,
U.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Zhou
,
L.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2012
, “
CFD Analysis of Flow and Heat Transfer in a Direct Transfer Preswirl System
,”
ASME J. Turbomach.
,
134
(
3
), p.
031017
.10.1115/1.4003229
29.
Javiya
,
U.
,
Chew
,
J.
,
Hills
,
N.
,
Dullenkopf
,
K.
, and
Scanlon
,
T.
,
2013
, “
Evaluation of Computational Fluid Dynamics and Coupled Fluid-Solid Modeling for a Direct Transfer Preswirl System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
051501
.10.1115/1.4007752
30.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,”
Ph.D. thesis
,
Oxford University
,
Oxford, UK
.http://people.maths.ox.ac.uk/gilesm/files/pierre_thesis.pdf
You do not currently have access to this content.