Abstract

Cycle humidification applied to micro gas turbines (mGTs) offers a solution to overcome their limited operational flexibility in terms of variable electrical and thermal power production when used in a combined heat and power (CHP) application. Although the positive impact of this cycle humidification on the performance has already been proven numerically and experimentally, very detailed modeling of the system performance remains challenging, especially the determination of the recuperator effectiveness, which has the highest impact on the final cycle performance. Indeed, the recuperator performance depends strongly on the mass flow rate of the air stream and its humidification level, two parameters that are difficult to measure accurately. Accurate modeling of the recuperator performance under both dry and humidified conditions is thus essential for correct assessment of the potential of humidified mGT cycles in decentralized energy systems (DESs). In this paper, we present a detailed analysis of the recuperator performance under humidified conditions using averaged experimental data, extended with the application of a support vector regression (SVR) on a time series to improve noise-modeling of the output signal, and thus enhance the accuracy of the monitoring process. In a first step, the missing experimental parameters, air mass flow rate and humidity level, were obtained indirectly, using rotational speed, fuel flow rate, exhaust gas composition and pressure level measurements in combination with the compressor map. Despite the low accuracy, some general trends regarding the recuperator performance could be observed based on these experimental data, indicating that the recuperator, despite having an increased total exchanged heat flux, is actually too small to exploit the full potential of the humidification. In a second step, by means of the SVR model, a first attempt was made to improve the accuracy and reduce the scatter on the recuperator performance determination. The predicted results with the SVR indicated indeed a reduced scatter on the determinations of the air mass flow rate and the amount of introduced water, opening a pathway toward online recuperator performance prediction.

References

1.
UNFCCC
,
2015
, “
Paris Agreement
,” United Nations Climate Change Conference, Bonn, Germany, accessed Dec. 3, 2019, https://unfccc.int/sites/default/files/english_paris_agreement.pdf
2.
Bilgili
,
M.
,
Ozbek
,
A.
,
Sahin
,
B.
, and
Kahraman
,
A.
,
2015
, “
An Overview of Renewable Electric Power Capacity and Progress in New Technologies in the World
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
323
334
.10.1016/j.rser.2015.04.148
3.
Elia
,
2019
, “
Elia Releases Its Figures on Belgium's 2018 Energy Mix
,” Elia, Brussels, Belgium, accessed Dec. 3, 2019, https://www.elia.be/en/news/press-releases/2019/01/20190118_press-release-elia-releases-its-figures-on-belgiums-2018-energy-mix
4.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Parente
,
A.
, and
Contino
,
F.
,
2016
, “
T100 mGT Converted Into mHAT for Domestic Applications: Economic Analysis Based on Hourly Demand
,”
Appl. Energy
,
164
, pp.
1019
1027
.10.1016/j.apenergy.2015.03.032
5.
Turbec AB
,
2000–2001
, “
T100 Microturbine CHP System: Technical Description Ver 4.0
,”
Turbec AB
,
Malmö, Sweden
.
6.
Jonsson
,
M.
, and
Yan
,
J.
,
2005
, “
Humidified Gas Turbines—A Review of Proposed and Implemented Cycles
,”
Energy
,
30
(
7
), pp.
1013
1078
.10.1016/j.energy.2004.08.005
7.
Rao
,
A. D.
,
1991
, “
European Patent Specification
,” Publication No. 0150990B1.
8.
Bram
,
S.
, and
De Ruyck
,
J.
,
1997
, “
Exergy Analysis Tools for ASPEN Applied to Evaporative Cycle Design
,”
Energy Convers. Manage.
,
38
(
15–17
), pp.
1613
1624
.10.1016/S0196-8904(96)00222-1
9.
Parente
,
J.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2003
, “
Micro Humid Air Cycle—Part A: Thermodynamic and Technical Aspects
,”
ASME
Paper No. GT2003-38326.10.1115/GT2003-38326
10.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Contino
,
F.
, and
Parente
,
A.
,
2017
, “
Waste Heat Recovery Optimization in Micro Gas Turbine Applications Using Advanced Humidified Gas Turbine Cycle Concepts
,”
Appl. Energy
,
207
, pp.
218
229
.10.1016/j.apenergy.2017.06.001
11.
De Paepe
,
W.
,
Contino
,
F.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2014
, “
Optimal Waste Heat Recovery in Micro Gas Turbine Cycles Through Liquid Water Injection
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
846
856
.10.1016/j.applthermaleng.2014.05.089
12.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2018
, “
Towards Higher Micro Gas Turbine Efficiency and Flexibility—Humidified mGTs: A Review
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081702
.10.1115/1.4038365
13.
Zhang
,
S.
, and
Xiao
,
Y.
,
2006
, “
Steady-State Off-Design Thermodynamic Performance Analysis of a Humid Air Turbine Based on a Micro Turbine
,”
ASME
Paper No. GT2006-90335.10.1115/GT2006-90335
14.
Nikpey
,
H.
,
Mansouri Majoumerd
,
M.
,
Assadi
,
M.
, and
Breuhaus
,
P.
,
2014
, “
Thermodynamic Analysis of Innovative Micro Gas Turbine Cycles
,”
ASME
Paper No. GT2014-26917.10.1115/GT2014-26917
15.
Majoumerd
,
M. M.
,
Somehsaraei
,
H. N.
,
Assadi
,
M.
, and
Breuhaus
,
P.
,
2014
, “
Micro Gas Turbine Configurations With Carbon Capture—Performance Assessment Using a Validated Thermodynamic Model
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
172
184
.10.1016/j.applthermaleng.2014.07.043
16.
Montero Carrero
,
M.
,
Ferrari
,
M. L.
,
De Paepe
,
W.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2015
, “
Transient Simulations of a T100 Micro Gas Turbine Converted Into a Micro Humid Air Turbine
,”
ASME
Paper No. GT2015-43277.10.1115/GT2015-43277
17.
Dodo
,
S.
,
Nakano
,
S.
,
Inoue
,
T.
,
Ichinose
,
M.
,
Yagi
,
M.
,
Tsubouchi
,
K.
,
Yamaguchi
,
K.
, and
Hayasaka
,
Y.
,
2004
, “
Development of an Advanced Microturbine System Using Humid Air Turbine Cycle
,”
ASME
Paper No. GT2004-54337.10.1115/GT2004-54337
18.
Nakano
,
S.
,
Kishibe
,
T.
,
Araki
,
H.
,
Yagi
,
M.
,
Tsubouchi
,
K.
,
Ichinose
,
M.
,
Hayasaka
,
Y.
,
Sasaki
,
M.
,
Inoue
,
T.
,
Yamaguchi
,
K.
, and
Shiraiwa
,
H.
,
2007
, “
Development of a 150 kW Microturbine System Which Applies the Humid Air Turbine Cycle
,”
ASME
Paper No. GT2007-28192.10.1115/GT2007-28192
19.
Wei
,
C.
, and
Zang
,
S.
,
2013
, “
Experimental Investigation on the Off-Design Performance of a Small-Sized Humid Air Turbine Cycle
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
166
176
.10.1016/j.applthermaleng.2012.08.061
20.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
, and
Contino
,
F.
,
2014
, “
T100 Micro Gas Turbine Converted to Full Humid Air Operation: Test Rig Evaluation
,”
ASME
Paper No. GT2014-26123.10.1115/GT2014-26123
21.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
, and
Contino
,
F.
,
2015
, “
T100 Micro Gas Turbine Converted to Full Humid Air Operation: A Thermodynamic Performance Analysis
,”
ASME
Paper No. GT2015-43267.10.1115/GT2015-43267
22.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2014
, “
Experimental Characterization of a T100 Micro Gas Turbine Converted to Full Humid Air Operation
,”
Energy Procedia
,
61
, pp.
2083
2088
.10.1016/j.egypro.2014.12.081
23.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Magnusson
,
J.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2016
, “
Experimental Characterisation of a Humidified T100 Micro Gas Turbine
,”
ASME
Paper No. GT2016-57649.10.1115/GT2016-57649
24.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Magnusson
,
J.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2017
, “
Experimental Characterisation of a Micro Humid Air Turbine: Assessment of the Thermodynamic Performance
,”
Appl. Therm. Eng.
,
118
, pp.
796
806
.10.1016/j.applthermaleng.2017.03.017
25.
De Paepe
,
W.
,
Contino
,
F.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2014
, “
New Concept of Spray Saturation Tower for Micro Humid Air Turbine Applications
,”
Appl. Energy
,
130
, pp.
723
737
.10.1016/j.apenergy.2014.03.055
26.
Xu
,
Z.
,
Lu
,
Y.
,
Wang
,
B.
,
Zhao
,
L.
,
Chen
,
C.
, and
Xiao
,
Y.
,
2019
, “
Experimental Evaluation of 100 kW Grade Micro Humid Air Turbine Cycles Converted From a Microturbine
,”
Energy
,
175
, pp.
687
693
.10.1016/j.energy.2019.03.036
27.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Bram
,
S.
,
Musin
,
F.
,
Parente
,
A.
, and
Contino
,
F.
,
2016
, “
Humidified Micro Gas Turbines for Domestic Users: An Economic and Primary Energy Savings Analysis
,”
Energy
,
117
(
2
), pp.
429
438
.10.1016/j.energy.2016.04.024
28.
McDonald
,
C. F.
, and
Rodgers
,
C.
,
2005
, “
Ceramic Recuperator and Turbine: The Key to Achieving a 40 Percent Efficient Microturbine
,”
ASME
Paper No. GT2005-68644.10.1115/GT2005-68644
29.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2017
, “
Does Humidification Improve the Micro Gas Turbine Cycle? Thermodynamic Assessment Based on Sankey and Grassmann Diagrams
,”
Appl. Energy
,
204
, pp.
1163
1171
.10.1016/j.apenergy.2017.05.067
30.
Mahmood
,
M.
,
Martini
,
A.
,
Massardo
,
A. F.
, and
De Paepe
,
W.
, “
Model Based Diagnostics of AE-T100 Micro Humid Air Turbine Cycle
,”
ASME
Paper No. GT2018-75979.10.1115/GT2018-75979
31.
Pedemonte
,
A.
,
Traverso
,
A.
, and
Massardo
,
A.
,
2008
, “
Experimental Analysis of Pressurised Humidification Tower for Humid Air Gas Turbine Cycles. Part A: Experimental Campaign
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1711
1725
.10.1016/j.applthermaleng.2007.10.030
32.
Parente
,
J. O.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2003
, “
Saturator Analysis for an Evaporative Gas Turbine Cycle
,”
Appl. Therm. Eng.
,
23
(
10
), pp.
1275
1293
.10.1016/S1359-4311(03)00060-7
33.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
,
Contino
,
F.
, and
De Ruyck
,
J.
,
2013
, “
A Study on the Performance of Steam Injection in a Typical Micro Gas Turbine
,”
ASME
Paper No. GT2013-94569.10.1115/GT2013-94569
34.
Lee
,
J. J.
,
Jeon
,
M. S.
, and
Kim
,
T. S.
,
2010
, “
The Influence of Water and Steam Injection on the Performance of a Recuperated Cycle Microturbine for Combined Heat and Power Application
,”
Appl. Energy
,
87
(
4
), pp.
1307
1316
.10.1016/j.apenergy.2009.07.012
35.
De Paepe
,
W.
,
Renzi
,
M.
,
Montero Carrerro
,
M.
,
Caligiuri
,
C.
, and
Contino
,
F.
,
2019
, “
Micro Gas Turbine Cycle Humidification for Increased Flexibility: Numerical and Experimental Validation of Different Steam Injection Models
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021009
.10.1115/1.4040859
36.
Lagerström
,
G.
, and
Xie
,
M.
,
2002
, “
High Performance and Cost Effective Recuperator for Micro-Gas Turbines
,”
ASME
Paper No. GT2002-30402.10.1115/GT2002-30402
37.
Renzi
,
M.
,
Caresana
,
F.
,
Pelagalli
,
L.
, and
Comodi
,
G.
,
2014
, “
Enhancing Micro Gas Turbine Performance Through Fogging Technique: Experimental Analysis
,”
Appl. Energy
,
135
, pp.
165
173
.10.1016/j.apenergy.2014.08.084
38.
Zanger
,
J.
,
Widenhorn
,
A.
, and
Aigner
,
M.
,
2011
, “
Experimental Investigations of Pressure Losses on the Performance of a Micro Gas Turbine System
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
082302
.10.1115/1.4002866
39.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2013
, “
Water Injection in a Micro Gas Turbine—Assessment of the Performance Using a Black Box Method
,”
Appl. Energy
,
112
, pp.
1291
1302
.10.1016/j.apenergy.2012.11.006
40.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Giorgetti
,
S.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2016
, “
Exhaust Gas Recirculation on Humidified Flexible Micro Gas Turbines for Carbon Capture Applications
,”
ASME
Paper No. GT2016-57265.10.1115/GT2016-57265
41.
Bellman
,
R.
,
1961
,
Adaptive Control Processes: A Guided Tour
,
Princeton University Press
,
Oxford, London, UK
.
42.
Smola
,
A.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.10.1023/B:STCO.0000035301.49549.88
43.
Chen
,
K.-Y.
,
2007
, “
Forecasting System Reliability Based on Support Vector Regression With Genetic Algorithms
,”
Reliab. Eng. Syst. Saf.
,
92
(
4
), pp.
423
432
.10.1016/j.ress.2005.12.014
44.
Cherkassky
,
V.
, and
Ma
,
Y.
,
2004
, “
Practical Selection of Svm Parameters and Noise Estimation for SVR Regression
,”
Neural Networks
,
17
(
1
), pp.
113
126
.10.1016/S0893-6080(03)00169-2
45.
Ito
,
K.
, and
Nakano
,
R.
,
2003
, “
Optimizing Support Vector Regression Hyperparameters Based on Cross-Validation
,”
Proceedings of the International Joint Conference on Neural Networks
, Portland, OR, July 20–24, pp.
2077
2082
.10.1109/IJCNN.2003.1223728
46.
Che
,
J.
,
2013
, “
Support Vector Regression Based on Optimal Training Subset and Adaptive Particle Swarm Optimization Algorithm
,”
Appl. Soft Comput.
,
13
(
8
), pp.
3473
3481
.10.1016/j.asoc.2013.04.003
47.
Megri
,
F.
,
Megri
,
A.
, and
Djabri
,
R.
,
2016
, “
An Integrated Fuzzy Support Vector Regression and the Particle Swarm Optimization Algorithm to Predict Indoor Thermal Comfort
,”
Indoor Built Environ.
,
25
(
8
), pp.
1248
1258
.10.1177/1420326X15597545
48.
Michalewicz
,
Z.
,
1995
, “
Genetic Algorithms Numerical Optimization and Constraints
,”
Proceedings of the Sixth International Conference on Genetic Algorithms
, Pittsburgh, PA, July 15–19, pp.
151
158
. https://cs.adelaide.edu.au/~zbyszek/Papers/p16.pdf
49.
Tsirikoglou
,
P.
,
Abraham
,
S.
,
Contino
,
F.
,
Lacor
,
C.
, and
Ghorbaniasl
,
G.
,
2017
, “
A Hyperparameters Selection Technique for Support Vector Regression Models
,”
Appl. Soft Comput.
,
61
, pp.
139
148
.10.1016/j.asoc.2017.07.017
You do not currently have access to this content.