Abstract

Thermoacoustic properties of can-annular combustors are commonly investigated by means of single-can test-rigs. To obtain representative results, it is crucial to mimic can–can coupling present in the full engine. However, current approaches either lack a solid theoretical foundation or are not practicable for high-pressure rigs. In this study, we employ Bloch-wave theory to derive reflection coefficients that correctly represent can–can coupling. We propose a strategy to impose such reflection coefficients at the acoustic terminations of a single-can test-rig by installing passive acoustic elements, namely straight ducts or Helmholtz resonators. In an iterative process, these elements are adapted to match the reflection coefficients for the dominant frequencies of the full engine. The strategy is demonstrated with a network model of a generic can-annular combustor and a three-dimensional (3D) model of a realistic can-annular combustor configuration. For the latter, we show that can–can coupling via the compressor exit plenum is negligible for frequencies sufficiently far away from plenum eigenfrequencies. Without utilizing previous knowledge of relevant frequencies or flame dynamics, the test-rig models are adapted within a few iterations and match the full engine with good accuracy. Using Helmholtz resonators for test-rig adaption turns out to be more viable than using straight ducts.

References

1.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
2.
Farisco
,
F.
,
Panek
,
L.
, and
Kok
,
J. B.
,
2017
, “
Thermo-Acoustic Cross-Talk Between Cans in a Can-Annular Combustor
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
452
469
.10.1177/1756827717716373
3.
Farisco
,
F.
,
Panek
,
L.
,
Kok
,
J. B. W.
,
Pent
,
J.
, and
Rajaram
,
R.
,
2015
, “
Thermo-Acoustic Coupling in Can-Annular Combustors—A Numerical Investigation
,” International Congress of Sound and Vibration (
ICSV22
), Florence, Italy, July 12–16, Vol.
23
, p.
9
.https://www.researchgate.net/publication/317380629_THERMO-ACOUSTIC_COUPLING_IN_CAN-ANNULAR_COMBUSTORS_-_A_NUMERICAL_INVESTIGATION
4.
Panek
,
L.
,
Farisco
,
F.
, and
Huth
,
M.
,
2017
, “
Thermo-Acoustic Characterization of Can-Can Interaction of a Can-Annular Combustion System Based on Unsteady CFD LES Simulation
,”
Proceedings of the First Global Power and Propulsion Forum
, Zurich, Switzerland, Paper No. GPPF-2017-81.
5.
Bethke
,
S.
,
Krebs
,
W.
,
Flohr
,
P.
, and
Prade
,
B.
,
2002
, “
Thermoacoustic Properties of Can Annular Combustors
,”
AIAA
Paper No. 2002-2570.10.2514/6.2002-2570
6.
Kaufmann
,
P.
,
Krebs
,
W.
,
Valdes
,
R.
, and
Wever
,
U.
,
2008
, “
3D Thermoacoustic Properties of Single Can and Multi Can Combustor Configurations
,”
ASME
Paper No. GT2008-50755.10.1115/GT2008-50755
7.
Moon
,
K.
,
Jegal
,
H.
,
Gu
,
J.
, and
Kim
,
K. T.
,
2019
, “
Combustion-Acoustic Interactions Through Cross-Talk Area Between Adjacent Model Gas Turbine Combustors
,”
Combust. Flame
,
202
, pp.
405
416
.10.1016/j.combustflame.2019.01.027
8.
Ghirardo
,
G.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2020
, “
Effect of Noise and Nonlinearities on Thermoacoustics of Can-Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041005
.10.1115/1.4044487
9.
Jegal
,
H.
,
Moon
,
K.
,
Gu
,
J.
,
Li
,
L. K.
, and
Kim
,
K. T.
,
2019
, “
Mutual Synchronization of Two Lean-Premixed Gas Turbine Combustors: Phase Locking and Amplitude Death
,”
Combust. Flame
,
206
, pp.
424
437
.10.1016/j.combustflame.2019.05.017
10.
Gruschka
,
U.
,
Janus
,
B.
,
Meisl
,
J.
,
Huth
,
M.
, and
Wasif
,
S.
,
2008
, “
ULN System for the New SGT5-8000H Gas Turbine: Design and High Pressure Rig Test Results
,”
ASME
Paper No. GT2008-51208.10.1115/GT2008-51208
11.
Mongia
,
H. C.
,
Held
,
T. J.
,
Hsiao
,
G. C.
, and
Pandalai
,
R. P.
,
2003
, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
822
829
.10.2514/2.6197
12.
Venkatesan
,
K.
,
Cross
,
A.
,
Yoon
,
C.
,
Han
,
F.
, and
Bethke
,
S.
,
2019
, “
Heavy Duty Gas Turbine Combustion Dynamics Study Using a Two-Can Combustion System
,”
ASME
Paper No. GT2019-90327.10.11115/GT2019-90327.
13.
Ghirardo
,
G.
,
Di Giovine
,
C.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2018
, “
Thermoacoustics of Can-Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011007
.10.1115/1.4040743
14.
Haeringer
,
M.
, and
Polifke
,
W.
,
2019
, “
Time Domain Bloch Boundary Conditions for Efficient Simulation of Thermoacoustic Limit-Cycles in (Can-)Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121005
.10.1115/1.4044869
15.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Oliver Paschereit
,
C.
,
2008
, “
Active Control of the Acoustic Boundary Conditions of Combustion Test Rigs
,”
J. Sound Vib.
,
318
(
4–5
), pp.
678
701
.10.1016/j.jsv.2008.04.046
16.
Bothien
,
M. R.
, and
Paschereit
,
C. O.
,
2010
, “
Tuning of the Acoustic Boundary Conditions of Combustion Test Rigs With Active Control: Extension to Actuators With Nonlinear Response
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
091503
.10.1115/1.4000599
17.
Niether
,
S.
,
2018
, “
Modification of a High Pressure Test Rig for Thermoacoustic Measurements
,”
Empirical dissertation
, TU Berlin, Berlin.10.14279/depositonce-7474
18.
Bloch
,
F.
,
1929
, “
Über Die Quantenmechanik Der Elektronen in Kristallgittern
,”
Z. Phys.
,
52
(
7–8
), pp.
555
600
.10.1007/BF01339455
19.
Mensah
,
G. A.
,
Campa
,
G.
, and
Moeck
,
J. P.
,
2016
, “
Efficient Computation of Thermoacoustic Modes in Industrial Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081502
.10.1115/1.4032335
20.
Fournier
,
G. J. J.
,
Haeringer
,
M.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2020
, “
Low-Order Modeling to Investigate Clusters of Intrinsic Thermoacoustic Modes in Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
, Epub.https://asme-turboexpo.secure-platform.com/a/solicitations/105/sessiongallery/5407/application/47003
21.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
22.
Förner
,
K.
, and
Polifke
,
W.
,
2017
, “
Nonlinear Aeroacoustic Identification of Helmholtz Resonators Based on a Local-Linear Neuro-Fuzzy Network Model
,”
J. Sound Vib.
,
407
, pp.
170
190
.10.1016/j.jsv.2017.07.002
23.
Hoeijmakers
,
M.
,
Kornilov
,
V.
,
Lopez Arteaga
,
I.
,
de Goey
,
P.
, and
Nijmeijer
,
H.
,
2014
, “
Intrinsic Instability of Flame-Acoustic Coupling
,”
Combust. Flame
,
161
(
11
), pp.
2860
2867
.10.1016/j.combustflame.2014.05.009
24.
Bomberg
,
S.
,
Emmert
,
T.
, and
Polifke
,
W.
,
2015
, “
Thermal Versus Acoustic Response of Velocity Sensitive Premixed Flames
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3185
3192
.10.1016/j.proci.2014.07.032
25.
Albayrak
,
A.
,
Steinbacher
,
T.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2017
, “
Convective Scaling of Intrinsic Thermo-Acoustic Eigenfrequencies of a Premixed Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041510
.10.1115/1.4038083
26.
Merk
,
M.
,
Gaudron
,
R.
,
Silva
,
C.
,
Gatti
,
M.
,
Mirat
,
C.
,
Schuller
,
T.
, and
Polifke
,
W.
,
2019
, “
Prediction of Combustion Noise of an Enclosed Flame by Simultaneous Identification of Noise Source and Flame Dynamics
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5263
5270
.10.1016/j.proci.2018.05.124
27.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.10.1115/1.4004183
28.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Limit Cycles of Spinning Thermoacoustic Modes in Annular Combustors: A Bloch-Wave and Adjoint-Perturbation Approach
,”
ASME
Paper No. GT2017-64817.10.1115/GT2017-64817
29.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. Acust.
,
102
(
5
), pp.
824
833
.10.3813/AAA.918997
30.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.10.1016/j.combustflame.2013.03.020
31.
COMSOL, Inc
., 2014, “COMSOL Multiphysics Reference Manual, Version 4.4,” COMSOL, Burlington, MA.
You do not currently have access to this content.