Abstract

As an alternative to the commonly used swirl burners in microgas turbines (MGT), the FLOX®-based combustion concept promises great potential for the nitric oxide emission reduction and increased fuel flexibility. Despite having to deal with a new set of challenges while utilizing liquid fuel in the burner, first steps are taken to gain more information on the influencing operational parameters. In this regard, a FLOX®-based liquid fuel burner is developed to fit into a newly designed combustor for the Capstone C30 MGT. The C30 combustor operates with three burners arranged tangentially to an annular combustion chamber and provides a total thermal power of 115 kW. In this work, operational properties of merely one of the three C30 liquid fuel burners are investigated and the rest of the two burners are emulated in form of hot cross-flow. As for the liquid burners, the experiments are conducted with three geometrically different single-nozzle burners at atmospheric pressure. The cross-flow is realized by utilizing a 20–nozzle FLOX®-based natural gas combustor. Measurements include visualization of the reaction zone and analysis of the exhaust gas emissions. By detecting the hydroxyl radical chemiluminescence (OH*-CL) emissions, the position of the heat release zone within the combustion chamber is attained. Correspondingly, the flame height above burner and the flame length are calculated. The investigated design parameters include air preheat temperature up to 733 K, equivalence ratio, burner geometry, and thermal power. Through variation of thermal power, the effect of liquid fuel preparation, i.e., atomization, evaporation, and mixing on combustion properties and exhaust gas emissions are examined. The results show that the burners with the medium diameter consistently performed remarkably at different flame temperatures and thermal powers. The lowest NOx and CO emissions for the medium diameter burner lied between 5 to 7 ppm and 8 to 10 ppm, respectively.

References

1.
WS Wärmeprozesstechnik GmbH
, “FLOX® is a Registered Trademark of WS Wärmeprozesstechnik GmbH,” WS Wärmeprozesstechnik GmbH,
Renningen, Germany
.
2.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
, 23(1), pp.
81
94
.10.1016/S0360-1285(97)00006-3
3.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
,.
2010
, “
FLOX® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503
.10.1115/1.4001825
4.
Severin
,
M.
,
2019
, “
Analyse Der Flammenstabilisierung Intensiv Mischender Jetflammen Für Gasturbinenbrennkammern
,”
Ph.D. dissertation
,
Institute of Combustion Technology for Aerospace Engineering (IVLR) University of Stuttgart
,
Stuttgart, Germany
.10.18419/opus-10552
5.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
, “
Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition
” Taylor & Francis, Boca Raton, FL.https://books.google.co.in/books/about/Gas_Turbine_Combustion.html?id=-i78kIXeZ5MC&redir_esc=y
6.
Panne
,
T.
,
2015
, “
Charakterisierung numerischer Methoden für die Auslegung FLOX®-basierter Brennkammer-systeme
,”
Ph.D. thesis
, Institute of Combustion Technology for Aerospace Engineering, University of Stuttgart, Stuttgart, Germany.10.18419/opus-3981
7.
Kislat
,
O.
,
Zanger
,
J.
,
Krummrein
,
T.
,
Kutne
,
P.
, and
Aigner
,
M.
,
2019
, “
Detailed Experimental Investigation of the Operational Parameters of a 30 kW Micro Gas Turbine
,”
ASME
Paper No. GT2019-90709
. 10.1115/GT2019-90709
8.
Chen
,
J.
,
Mitchell
,
M. G.
, and
Nourse
,
J. G.
, “
Development of Ultra-Low Emission Diesel Fuel-Fired Microturbine Engines for Vehicular Heavy Duty Applications: Combustion Modification
,”
ASME
Paper No. GT2010-23181
.10.1115/GT2010-23181
9.
Gounder
,
J. D.
,
Zizin
,
A.
,
Oliver
,
L.
,
Rachner
,
M.
,
Kulkarni
,
S. R.
, and
Aigner
,
M.
,
2016
, “
Experimental and Numerical Investigation of Spray Characteristics in a New FLOX®-Based Combustor for Liquid Fuels for Micro Gas Turbine Range Extender (MGT-REX)
,”
AIAA
Paper No. 2016-4698.10.2514/6.2016-4698
10.
Gokulakrishnan
,
P.
,
Ramotowski
,
M. J.
,
Gaines
,
G.
,
Fuller
,
C.
,
Joklik
,
R.
,
Eskin
,
L. D.
,
Klassen
,
M. S.
, and
Roby
,
R. J.
,.
2008
, “
A Novel Low NOx Lean, Premixed, and Prevaporized Combustion System for Liquid Fuels
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051501
.10.1115/1.2904889
11.
Weber
,
R.
,
Smart
,
J. P.
, and
vd Kamp
,
W.
,
2005
, “
On the (MILD) Combustion of Gaseous, Liquid, and Solid Fuels in High Temperature Preheated Air
,”
Proc. Combust. Inst.,
30
(2), pp.
2623
2629
.10.1016/j.proci.2004.08.101
12.
Lee
,
J. C. Y.
,
Malte
,
P. C.
, and
Benjamin
,
M. A.
,
2001
, “
Low NOx Combustion for Liquid Fuels: Atmospheric Pressure Experiments Using a Staged Prevaporizer-Premixer
,”
ASME
Paer No. 2001-GT-0081
. 10.1115/2001-GT-0081
13.
Cavaliere
,
A.
, and
Joannon
,
M.
,
2004
, “
MILD Combustion
,”
Prog. Energy Comb. Sci.
,
30
(
4
), pp.
329
366
.10.1016/j.pecs.2004.02.003
14.
Krishna
,
C. R.
,
2007
, “
Biodiesel Blends in Microturbine
,” Energy Sciences and Technology Department/Energy Resources Division, Brookhaven National Laboratory, Upton, NY, Report No. BNL-77928-2007-IR.
15.
Izadi
,
S.
,
2018
, “
Characterization of Pressure Atomizers for a Single Nozzle Liquid FLOX® Burner Using Optical and Laser Diagnostics
,” M.S. thesis,
Institute of Combustion Technology for Aerospace Engineering (IVLR) University of Stuttgart
,
Stuttgart, Germany
.
16.
Schäfer
,
D.
,
2017
, “
Untersuchung Der Einflüsse Verschiedener Zerstäuber Auf Die Leistung Eines 2–Düsen–Füssig–FLOX®–Brenners Bei Einem Betriebsdruck Von 3,5 Bar Und Einer Betriebstemperatur Von 460 °C
,”
M.S. thesis
,
Institute of Combustion Technology for Aerospace Engineering (IVLR) University of Stuttgart
,
Stuttgart, Germany
.https://elib.dlr.de/117033/
17.
Bolszo
,
C.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2007
, “
Impact of Biodiesel on Fuel Preparation and Emissions for a Liquid Fired Gas Turbine Engine
,”
ASME
Paper No. GT2007-27652
. 10.1115/GT2007-27652
18.
Wei
,
Z.
,
Li
,
X.
,
Xu
,
L.
, and
Tan
,
C.
,
2012
, “
Optimization of Operating Parameters for Low NOx Emission in High-Temperature Air Combustion
,”
Energy Fuels.
,
26
(
5
), pp.
2821
2829
.10.1021/ef300254m
19.
Nakamura
,
S.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2008
, “
The Effect of Liquid Fuel Preparation on Gas Turbine Emissions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021506
.10.1115/1.2771564
20.
Zanger
,
J.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Experimental Investigation of the Combustion Characteristics of a Double-Staged FLOX®–Based Combustor on an Atmospheric and a Micro Gas Turbine Test Rig
,”
ASME Paper No. GT2015-42313.
10.1115/GT2015-42313
21.
Bower
,
H. E.
,
Schwärzle
,
A.
,
Grimm
,
F.
,
Zornek
,
T.
, and
Kutne
,
P.
,
2019
, “
Experimental Analysis of a Micro Gas Turbine Combustor Optimized for Flexible Operation With Various Gaseous Fuel Compositions
,”
ASME
Paper No. GT2019-90183.
10.1115/GT2019–90183
22.
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
2003
, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
735
750
.10.2514/2.6191
23.
Dandy
,
D. S.
, and
Vosen
,
S. R.
,
1992
, “
Numerical and Experimental Studies of Hydroxyl Radical Chemiluminescence in Methane Air Flames
,”
Combust. Sci. Technol.
,
82
(
1–6
), pp.
131
150
.10.1080/00102209208951816
24.
Zanger
,
J.
,
Zornek
,
T.
, and
Monz
,
T.
, “
Entnahmesonde Und Verfahren Zur Entnahme Von Abgas
,” Patent No. DE 10 2017 102 046 A1 2018.08.02.
25.
Gounder
,
J. D.
,
Zizin
,
A.
,
Lammel
,
O.
, and
Aigner
,
M.
,
2016
, “
Spray Characteristics Measured in a New FLOX® Based Low Emission Combustor for Liquid Fuels Using Laser and Optical Diagnostics
,”
ASME
Paper No. GT2016-56629.10.1115/GT2016-56629
You do not currently have access to this content.