Abstract

Despite the importance of turbocharged engines with dual-volute turbines, their characteristic maps and fully predictive modeling using 1D gas dynamic codes are not well established yet. The complexity of unsteady flow and the unequal admission of these turbines, when operating with pulses of engine exhaust gas, makes them a challenging system. This is mainly due to the unequal flow admission, which generates an additional degree-of-freedom with respect to well-known single entry vanned or vaneless turbines. This paper has as the main novelty a simple procedure for characterizing experimentally and elaborating characteristic maps of these turbines with unequal flow conditions. This method of analysis allows for easy interpolation within the proposed characteristic maps or conceiving simple models for calculating and extrapolating full performance parameters of dual-volute turbines. Two innovative 0D mean-line models are described that require a minimum quantity of experimental data for calibrating both: the mass flow parameter model and the isentropic efficiency model. Both models are predictive either in partial or unequal flow conditions using as inputs: the mass flow ratio and the total temperature ratio between branches; the blade speed ratio and the pressure ratio in each branch. These six inputs are generally instantaneously provided by 1D gas-dynamics codes. Therefore, the novelty of the model is its ability to be used in a quasi-steady way for dual volute turbines performance prediction. This can be done instantaneously when turbines are calculated operating at turbocharged engines under pulsating and unequal flow conditions.

References

1.
Benajes
,
J.
,
Reyes
,
E.
,
Bermudez
,
V.
, and
Serrano
,
J. R.
,
1998
, “
Pre-Design Criteria for Exhaust Manifolds in I.C. Automotive Engines
,”
SAE
Paper No. 980783.10.4271/980783
2.
Serrano
,
J. R.
,
Arnau
,
F. J.
,
Dolz
,
V.
,
Tiseira
,
A.
, and
Cervelló
,
C.
,
2008
, “
A Model of Turbocharger Radial Turbines Appropriate to Be Used in Zero- and One-Dimensional Gas Dynamics Codes for Internal Combustion Engines Modelling
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3729
3745
.10.1016/j.enconman.2008.06.031
3.
Payri
,
F.
,
Serrano
,
J. R.
,
Fajardo
,
P.
,
Reyes-Belmonte
,
M. A.
, and
Gozalbo-Belles
,
R.
,
2012
, “
A Physically Based Methodology to Extrapolate Performance Maps of Radial Turbines
,”
Energy Convers. Manage.
,
55
, pp.
149
163
.10.1016/j.enconman.2011.11.003
4.
Pischinger
,
F.
, and
Wunsche
,
A.
,
1977
, “
The Characteristic Behaviour of Radial Turbines and Its Influence on the Turbocharging Process
,”
Proceedings of the CIMAC Conference
, Tokyo, Japan, May.
5.
Dale
,
A.
, and
Watson
,
N.
,
1986
, “
Vaneless Radial Turbocharger Turbine Performance
,”
Proceedings of the IMechE
, London, UK, May 6, IMechE Paper No. C110/86, pp.
65
76
.
6.
Baines
,
N. C.
, and
Yeo
,
J. H.
,
1991
, “
Flow in a Radial Turbine Under Equal and Partial Admission Conditions
,” London, UK, IMechE Paper No. C423/002.
7.
Hajilouy-Benisi
,
A.
,
Rad
,
M.
, and
Shahhosseini
,
M. R.
,
2009
, “
Flow and Performance Characteristics of Twin-Entry Radial Turbine Under Full and Extreme Partial Admission Conditions
,”
Archive Appl. Mech.
,
79
(
12
), pp.
1127
1143
.10.1007/s00419-008-0295-5
8.
Romagnoli
,
A.
,
Martinez-Botas
,
R. F.
, and
Rajoo
,
S.
,
2011
, “
Steady State Performance Evaluation of Variable Geometry Twin-Entry Turbine
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
477
489
.10.1016/j.ijheatfluidflow.2010.12.002
9.
Ghasemi
,
S.
,
Shirani
,
E.
, and
Hajilouy-Benisi
,
A.
,
2002
, “
Performance Prediction of Twin-Entry Turbocharger Turbines
,”
ASME
Paper No. GT2002-30576.10.1115/GT2002-30576
10.
Aghaali
,
H.
, and
Hajilouy-Benisi
,
A.
,
2007
, “
Experimental and Theoretical Investigation of Twin-Entry Radial Inflow Gas Turbine With Unsymmetrical Volute Under Full and Partial Admission Conditions
,”
ASME
Paper No. GT2007-27807.10.1115/GT2007-27807
11.
Romagnoli
,
A.
,
Copeland
,
C. D.
,
Martinez-Botas
,
R. F.
,
Seiler
,
M.
,
Rajoo
,
S.
, and
Costall
,
A.
,
2013
, “
Comparison Between the Steady Performance of Double-Entry and Twin-Entry Turbocharger Turbines
,”
ASME J. Turbomach.
,
135
(
1
), p.
011042
.10.1115/1.4006566
12.
Newton
,
P.
,
Romagnoli
,
A.
,
Martinez-Botas
,
R.
,
Copeland
,
C.
, and
Seiler
,
M.
,
2014
, “
A Method of Map Extrapolation for Unequal and Partial Admission in a Double Entry Turbine
,”
ASME J. Turbomach
,
136
(
6
), p.
061019
.10.1115/1.4025763
13.
Palenschat
,
T.
,
Mueller
,
M.
,
Rajoo
,
S.
,
Chiong
,
M. S.
,
Newton
,
P.
,
Martinez-Botas
,
R.
, and
Tan
,
F. X.
,
2018
, “
Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions
,”
SAE
Paper No. 2018-01-0971.10.4271/2018-01-0971
14.
Romagnoli
,
A.
, and
Martinez-Botas
,
R.
,
2011
, “
Performance Prediction of a Nozzled and Nozzleless Mixed-Flow Turbine in Steady Conditions
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
557
574
.10.1016/j.ijmecsci.2011.05.003
15.
Serrano
,
J. R.
,
Arnau
,
F. J.
,
Gracía-Cuevas
,
L. M.
,
Samala
,
V.
, and
Smith
,
L.
,
2019
, “
Experimental Approach for the Characterization and Performance Analysis of Twin Entry Radial-Inflow Turbines in a Gas Stand and With Different Flow Admission Conditions
,”
Appl. Therm. Eng.
,
159
, p.
113737
.10.1016/j.applthermaleng.2019.113737
16.
Cavina
,
N.
,
Borelli
,
A.
,
Calogero
,
L.
,
Cevolani
,
R.
, and
Poggio
,
L.
,
2015
, “
Turbocharger Control-Oriented Modeling: Twin-Entry Turbine Issues and Possible Solutions
,”
SAE Int. J. Engines
,
8
(
5
), pp.
2120
2132
.10.4271/2015-24-2427
17.
Lückmann
,
D.
,
Stadermann
,
M.
,
Pischinger
,
S.
, and
Kindl
,
H.
,
2016
, “
Advanced Measurement and Modelling Methods of Turbochargers
,”
MTZ Worlwide
,
77
(
6
), pp.
80
87
.10.1007/s38313-016-0055-9
18.
Zimmermann
,
R.
,
Baar
,
R.
, and
Biet
,
C.
,
2016
, “
Determination of the Isentropic Turbine Efficiency Due to Adiabatic Measurements and the Validation of the Conditions Via a New Criterion
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
232
(
24
), pp.
1
10
.10.1177/0954406216670683
19.
Savic
,
B.
,
Zimmermann
,
R.
,
Jander
,
B.
, and
Baar
,
R.
,
2017
, “
New Phenomenological and Power-Based Approach for Determining the Heat Flows of a Turbocharger Directly From Hot Gas Test Data
,”
12th European Conference on Turbomachinery
, ETC, Stockholm, Sweden, Apr. 3–7, pp.
1
12
.10.29008/ETC2017-258
20.
Lüddecke
,
B.
,
Filsinger
,
D.
, and
Ehrhard
,
J.
,
2012
, “
On Mixed Flow Turbines for Automotive Turbocharger Applications
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
14
.10.1155/2012/589720
21.
Serrano
,
J. R.
,
Tiseira
,
A.
,
García-Cuevas
,
L. M.
,
Inhestern
,
L. B.
, and
Tartoussi
,
H.
,
2017
, “
Radial Turbine Performance Measurement Under Extreme Off-Design Conditions
,”
Energy
,
125
, pp.
72
84
.10.1016/j.energy.2017.02.118
22.
Serrano
,
J. R.
,
Arnau
,
F. J.
,
García-Cuevas
,
L. M.
,
Dombrovsky
,
A.
, and
Tartoussi
,
H.
,
2016
, “
Development and Validation of a Radial Turbine Efficiency and Mass Flow Model at Design and Off-Design Conditions
,”
Energy Convers. Manage.
,
128
, pp.
281
293
.10.1016/j.enconman.2016.09.032
23.
Serrano
,
J. R.
,
Arnau
,
F. J.
,
Gracía-Cuevas
,
L. M.
, and
Samala
,
V.
,
2020
, “
A Robust Adiabatic Model for a Quasi-Steady Prediction of Far-Off Non-Measured Performance in Vaneless Twin-Entry or Dual-Volute Radial Turbines
,”
Appl. Sci.,
10(6), p. 1955.10.3390/app10061955
24.
Watson
,
N.
, and
Janota
,
M.
,
1982
,
Turbocharging the Internal Combustion Engine
,
Macmillan
,
New York
.
You do not currently have access to this content.