Abstract

Heavy-duty gas turbines are commonly designed with can-annular combustors, in which all flames are physically separated. Acoustically, however, the cans communicate via the upstream located compressor plenum or at the downstream gaps found at the transition to the turbine inlet. In this study, a coupling condition that is based on a Rayleigh conductivity and acoustic flux conservation is derived. It enables acoustic communication between adjacent cans, in which one-dimensional acoustic waves propagate. In addition, because can-annular systems commonly feature a discrete rotational symmetry, the acoustic field can be expressed as a Bloch-periodic wave in the azimuthal direction. We demonstrate how the coupling conditions resulting in a combustion system with N cans can be expressed as an effective impedance for a single can. By means of this Bloch-type boundary condition, the thermoacoustics of a can-annular system can be analyzed considering only one can, thus reducing the size of the problem by a factor of N. Using this method, we investigate in frequency domain the effect of the coupling strength of a generic can-annular combustor consisting of 12 identical cans, which are connected at the downstream end. We describe generic features of can-annular systems that can be efficiently addressed with this framework and derive results on the frequency response of the cans at various Bloch numbers in the low-frequency and high-frequency limits. Furthermore, the formation of eigenvalue clusters with eigenvalues of close frequency and growth rate, but very different mode shapes is discussed.

References

1.
Kaufmann
,
P.
,
Krebs
,
W.
,
Valdes
,
R.
, and
Wever
,
U.
,
2008
, “
3D Thermoacoustic Properties of Single Can and Multi Can Combustor Configurations
,”
ASME
Paper No. GT2008-50755.10.1115/GT2008-50755
2.
Panek
,
L.
,
Huth
,
M.
, and
Farisco
,
F.
,
2017
, “
Thermo-Acoustic Characterization of Can-Can Interaction of a Can-Annular Combustion System Based on Unsteady CFD LES Simulation
,”
First Global Power and Propulsion Forum
, Zurich, Switzerland, Jan. 16–18.https://www.researchgate.net/publication/317400221_THERMO-ACOUSTIC_CHARACTERIZATION_OF_CAN-CAN_INTERACTION_OF_A_CAN-ANNULAR_COMBUSTION_SYSTEM_BASED_ON_UNSTEADY_CFD_LES_SIMULATION
3.
Farisco
,
F.
,
Panek
,
L.
, and
Kok
,
J. B.
,
2017
, “
Thermo-Acoustic Cross-Talk Between Cans in a Can-Annular Combustor
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
452
469
.10.1177/1756827717716373
4.
Ghirardo
,
G.
,
Di Giovine
,
C.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2019
, “
Thermoacoustics of Can-Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011007
.10.1115/1.4040743
5.
Moon
,
K.
,
Jegal
,
H.
,
Gu
,
J.
, and
Kim
,
K. T.
,
2019
, “
Combustion-Acoustic Interactions Through Cross-Talk Area Between Adjacent Model Gas Turbine Combustors
,”
Combust. Flame
,
202
, pp.
405
416
.10.1016/j.combustflame.2019.01.027
6.
Jegal
,
H.
,
Moon
,
K.
,
Gu
,
J.
,
Li
,
L. K.
, and
Kim
,
K. T.
,
2019
, “
Mutual Synchronization of Two Lean-Premixed Gas Turbine Combustors: Phase Locking and Amplitude Death
,”
Combust. Flame
,
206
, pp.
424
437
.10.1016/j.combustflame.2019.05.017
7.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
8.
Bauerheim
,
M.
,
Parmentier
,
J.-F.
,
Salas
,
P.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
An Analytical Model for Azimuthal Thermoacoustic Modes in an Annular Chamber Fed by an Annular Plenum
,”
Combust. Flame
,
161
(
5
), pp.
1374
1389
.10.1016/j.combustflame.2013.11.014
9.
Rayleigh
,
J. W. S.
,
1945
,
The Theory of Sound
, 2nd ed.,
Dover Publications
,
New York
.
10.
Howe
,
M.
,
1979
, “
On the Theory of Unsteady High Reynolds Number Flow Through a Circular Aperture
,”
Proc. R. Soc. London, Ser. A
,
366
(
1725
), pp.
205
223
.10.1098/rspa.1979.0048
11.
Luong
,
T.
,
Howe
,
M.
, and
McGowan
,
R.
,
2005
, “
On the Rayleigh Conductivity of a Bias-Flow Aperture
,”
J. Fluids Struct.
,
21
(
8
), pp.
769
778
.10.1016/j.jfluidstructs.2005.09.010
12.
Howe
,
M.
,
Scott
,
M.
, and
Sipcic
,
S.
,
1996
, “
The Influence of Tangential Mean Flow on the Rayleigh Conductivity of an Aperture
,”
Proc. R. Soc. London, Ser. A
,
452
(
1953
), pp.
2303
2317
.10.1098/rspa.1996.0123
13.
Grace
,
S.
,
Howe
,
M.
, and
Horan
,
K.
,
1997
, “
The Influence of Grazing Flow on the Rayleigh Conductivity of an Aperture of Arbitrary Shape
,”
AIAA
Paper No. AIAA-97-1672-CP.10.2514/6.1997-1672
14.
Mensah
,
G. A.
,
Campa
,
G.
, and
Moeck
,
J. P.
,
2016
, “
Efficient Computation of Thermoacoustic Modes in Industrial Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081502
.10.1115/1.4032335
15.
Bloch
,
F.
,
1929
, “
Über die Quantenmechanik der Elektronen in Kristallgittern
,”
Z. Für Phys.
,
52
(
7–8
), pp.
555
600
.10.1007/BF01339455
16.
McManus
,
K.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.10.1016/0360-1285(93)90020-F
17.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
18.
Polifke
,
W.
,
2010
, “
Low-Order Analysis Tools for Aero- and Low-Order Analysis Tools for Aero- and Thermo-Acoustic Instabilities
,” (Lecture Series Advances in Aero-Acoustics and Thermo-Acoustics),
Von Karman Institute
,
Rhode-St-Genèse, Belgium
.
19.
Dowling
,
A. P.
,
1999
, “
A Kinematic Model of a Ducted Flame
,”
J. Fluid Mech.
,
394
, pp.
51
72
.10.1017/S0022112099005686
20.
Schuller
,
T.
,
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2002
, “
Modeling Tools for the Prediction of Premixed Flame Transfer Functions
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
107
113
.10.1016/S1540-7489(02)80018-9
21.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion–Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.10.2514/2.6193
22.
Kashinath
,
K.
,
Hemchandra
,
S.
, and
Juniper
,
M. P.
,
2013
, “
Nonlinear Phenomena in Thermoacoustic Systems With Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061502
.10.1115/1.4023305
23.
Orchini
,
A.
,
Illingworth
,
S. J.
, and
Juniper
,
M. P.
,
2015
, “
Frequency Domain and Time Domain Analysis of Thermoacoustic Oscillations With Wave-Based Acoustics
,”
J. Fluid Mech.
,
775
, pp.
387
414
.10.1017/jfm.2015.139
24.
Semlitsch
,
B.
,
Orchini
,
A.
,
Dowling
,
A. P.
, and
Juniper
,
M. P.
,
2017
, “
G-Equation Modelling of Thermoacoustic Oscillations of Partially Premixed Flames
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
260
276
.10.1177/1756827717711405
25.
Gustavsen
,
B.
, and
Semlyen
,
A.
,
1999
, “
Rational Approximation of Frequency Domain Responses by Vector Fitting
,”
IEEE Trans. Power Delivery
,
14
(
3
), pp.
1052
1061
.10.1109/61.772353
26.
Orchini
,
A.
,
Silva
,
C. F.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2020
, “
Thermoacoustic Modes of Intrinsic and Acoustic Origin and Their Interplay With Exceptional Points
,”
Combust. Flame
,
211
, pp.
83
95
.10.1016/j.combustflame.2019.09.018
27.
Sogaro
,
F. M.
,
Schmid
,
P. J.
, and
Morgans
,
A. S.
,
2019
, “
Thermoacoustic Interplay Between Intrinsic Thermoacoustic and Acoustic Modes: Non-Normality and High Sensitivities
,”
J. Fluid Mech.
,
878
, pp.
190
220
.10.1017/jfm.2019.632
You do not currently have access to this content.